The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

6581-6600hit(21534hit)

  • Feeding Matrix Placed on a Single Layer with Hybrid Coupler Controlling Beams in Three Directions Including Boresight

    Masatoshi TSUJI  

     
    LETTER-Antennas and Propagation

      Vol:
    E95-B No:10
      Page(s):
    3324-3327

    This paper proposes an easy-to-design, theory-consistent compact feeding circuit, with a single input and four outputs, being comprised of two hybrid circuits that are capable of switching a beam in three directions. The circuits that determine the phase differences between the antennas are present on the same single layer, and thus there is no effect of vias and the design agrees well with the underlying theory. In addition, the vertically and horizontally symmetrical circuit pattern contributes to a substantial reduction in design time. The circuit is designed for use in the ISM band and its properties are evaluated using an RF circuit simulator. A prototype is fabricated and evaluated. The results of the simulation and measurement agree well with the theoretical values. The dimensions of the feeding circuit are 75 (H)55 (W)3.0 (T) mm.

  • Improving Elevation Estimation Accuracy in DOA Estimation: How Planar Arrays Can Be Modified into 3-D Configuration

    Hiroki MORIYA  Koichi ICHIGE  Hiroyuki ARAI  Takahiro HAYASHI  Hiromi MATSUNO  Masayuki NAKANO  

     
    PAPER-DOA

      Vol:
    E95-A No:10
      Page(s):
    1667-1675

    This paper presents a simple 3-D array configuration for high-resolution 2-D Direction-Of-Arrival (DOA) estimation. Planar array structures like Uniform Rectangular Array (URA) or Uniform Circular Array (UCA) often well estimate azimuth angle but cannot well estimate elevation angle because of short antenna aperture in elevation direction. One may put more number of array elements to improve elevation angle estimation accuracy, however it will require very large hardware and software cost. This paper presents a simple 3-D array structure for high-resolution 2-D DOA estimation only by modifying the height of some array elements in a planar array. Based on the analysis of Cramer-Rao Lower Bound (CRLB) formulation and its dependency on the height of array elements, we develop a simple 3-D array structure which improves elevation angle estimation accuracy while preserving azimuth angle estimation accuracy.

  • Optimal Distributed Beamforming for Two-User MISO Interference Channel Based on a Game-Theoretic Viewpoint

    Jiamin LI  Dongming WANG  Pengcheng ZHU  Lan TANG  Xiaohu YOU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:10
      Page(s):
    3345-3348

    All points on the Pareto boundary can be obtained by solving the weighted sum rate maximization problem for some weighted coefficients. Unfortunately, the problem is non-convex and difficult to solve without performing an exhaustive search. In this paper, we propose an optimal distributed beamforming strategy for the two-user multiple-input single-output (MISO) interference channel (IC). Through minimizing the interference signal power leaked to the other receiver for fixed useful signal power received at the intended receiver, the original non-convex optimization problem can be converted into a family of convex optimization problems, each which can be solved in distributed manner with only local channel state information at each transmitter. After some conversion, we derive the closed-form solutions to all Pareto optimal points based on a game-theoretic viewpoint which indicates that linear combinations of the maximum-ratio transmit (MRT) and zero-forcing (ZF) beamforming strategies can achieve any point on the Pareto boundary of the rate region for the two-user MISO interference channel, and the only computation involved is to solve a basic quadratic equation. Finally, the result is validated via numerical simulations.

  • State Classification with Array Sensor Using Support Vector Machine for Wireless Monitoring Systems

    Jihoon HONG  Tomoaki OHTSUKI  

     
    PAPER

      Vol:
    E95-B No:10
      Page(s):
    3088-3095

    We have previously proposed an indoor monitoring and security system with an array sensor. The array sensor has some advantages, such as low privacy concern, easy installation with low cost, and wide detection range. Our study is different from the previously proposed classification method for array sensor, which uses a threshold to classify only two states for intrusion detection: nothing and something happening. This paper describes a novel state classification method based on array signal processing with a machine learning algorithm. The proposed method uses eigenvector and eigenvalue spanning the signal subspace as features, obtained from the array sensor, and assisted by multiclass support vector machines (SVMs) to classify various states of a human being or an object. The experimental results show that our proposed method can provide high classification accuracy and robustness, which is very useful for monitoring and surveillance applications.

  • LTCC Partially-Filled Post-Wall Rectangular-Waveguide Slot Array Antenna in the Millimeter-Wave Band

    Yuanfeng SHE  Jiro HIROKAWA  Makoto ANDO  Daisuke HANATANI  Masahiro FUJIMOTO  

     
    PAPER

      Vol:
    E95-C No:10
      Page(s):
    1635-1642

    In the millimeter-wave band, the series-fed array antenna is facing a problem of large transmission loss and narrow bandwidth by using a high-permittivity and large-loss-tangent material. In this paper, an air region is inserted in the half of the height in the LTCC waveguide of εr =6.6 and tanδ =0.013 to reduce the transmission loss. The reduction of the equivalent dielectric constant by the air insertion structure enhances both the gain and the bandwidth of the series-fed slot array. The transmission loss of the single-mode rectangular waveguide has been reduced to about 1/6 by using the partially-filled structure in the 60-GHz band. In a one-dimensional slot array, the total loss has also been reduced to about 1/7. And the 3 dB-down gain bandwidth has also been increased from 1.3 GHz to 2.3 GHz.

  • Channel Modeling and Performance Analysis of Diversity Reception for Implant UWB Wireless Link

    Jingjing SHI  Daisuke ANZAI  Jianqing WANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E95-B No:10
      Page(s):
    3197-3205

    This paper aims at channel modeling and bit error rate (BER) performance improvement with diversity reception for in-body to on-body ultra wideband (UWB) communication for capsule endoscope application. The channel characteristics are firstly extracted from 3.4 to 4.8 GHz by using finite difference time domain (FDTD) simulations incorporated with an anatomical human body model, and then a two-path impulse response channel model is proposed. Based on the two-path channel model, a spatial diversity reception technique is applied to improve the communication performance. Since the received signal power at each receiver location follows a lognormal distribution after summing the two path components, we investigate two methods to approximate the lognormal sum distribution in the combined diversity channel. As a result, the method matching a short Gauss-Hermite approximation of the moment generating function (MGF) of the lognormal sum with that of a lognormal distribution exhibits high accuracy and flexibility. With the derived probability density function (PDF) for the combined diversity signals, the average BER performances for impulse-radio (IR) UWB with non-coherent detection are investigated to clarify the diversity effect by both theoretical analysis and computer simulation. The results realize an improvement around 10 dB on Eb/No at BER of 10-3 for two-branch diversity reception.

  • Outage Analysis for Amplify-and-Forward Relay with End-to-End Antenna Selection over Non-identical Nakagami-m Environment

    Dac-Binh HA  Vo Nguyen Quoc BAO  Nguyen-Son VO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:10
      Page(s):
    3341-3344

    We derive a closed-form expression for the outage probability (OP), which is an important performance metric used to measure the probability that the target error rate performance of wireless systems exceeds a specified value, of multiple-input multiple-output (MIMO) amplify-and-forward (AF) relaying systems with best antenna selection under independent, but not necessarily identical distributed Nakagami-m fading. To gain further insights on the performance, the asymptotic approximation for OP, which reveals the diversity gain, is presented. We show that the diversity gain is solely determined by the fading severity parameters and increases with number of antennas at all nodes.

  • Convergence Vectors in System Identification with an NLMS Algorithm for Sinusoidal Inputs

    Yuki SATOMI  Arata KAWAMURA  Youji IIGUNI  

     
    PAPER-Digital Signal Processing

      Vol:
    E95-A No:10
      Page(s):
    1692-1699

    For an adaptive system identification filter with a stochastic input signal, a coefficient vector updated with an NLMS algorithm converges in the sense of ensemble average and the expected convergence vector has been revealed. When the input signal is periodic, the convergence of the adaptive filter coefficients has also been proved. However, its convergence vector has not been revealed. In this paper, we derive the convergence vector of adaptive filter coefficients updated with the NLMS algorithm in system identification for deterministic sinusoidal inputs. Firstly, we derive the convergence vector when a disturbance does not exist. We show that the derived convergence vector depends only on the initial vector and the sinusoidal frequencies, and it is independent of the step-size for adaptation, sinusoidal amplitudes, and phases. Next, we derive the expected convergence vector when the disturbance exists. Simulation results support the validity of the derived convergence vectors.

  • Construction of Optimal Low Correlation Zone Sequence Sets Based on DFT Matrices

    Chengqian XU  Yubo LI  Kai LIU  Xiaoyu CHEN  

     
    LETTER-Coding Theory

      Vol:
    E95-A No:10
      Page(s):
    1796-1800

    In this paper, we constructed a class of low correlation zone sequence sets derived from the interleaved technique and DFT matrices. When p is a prime such that p > 3, p-ary LCZ sequence sets with parameters LCZ(pn-1,pm-1,(pn-1)/(pm-1),1) are constructed based on a DFT matrix with order pp, which is optimal with respect to the Tang-Fan-Matsufuji bound. When p is a prime such that p ≥ 2, pk-ary LCZ sequence sets with parameters LCZ(pn-1,pk-1,(pn-1)/(pk-1),1) are constructed based on a DFT matrix with order pkpk, which is also optimal. These sequence sets are useful in certain quasi-synchronous code-division mutiple access (QS-CDMA) communication systems.

  • Effect of Multiple Antennas on the Transport Capacity in Large-Scale Ad Hoc Networks

    Won-Yong SHIN  Koji ISHIBASHI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E95-B No:10
      Page(s):
    3113-3119

    A one-dimensional ad hoc network with a single active source–destination pair is analyzed in terms of transport capacity, where each node uses multiple antennas. The analysis is based on using a multi-hop opportunistic routing transmission in the presence of fading. Specifically, the lower and upper bounds on the transport capacity are derived and their scaling law is analyzed as the node density, λ, is assumed to be infinitely large. The lower and upper bounds are shown to have the same scaling (ln λ)1/α, where α denotes the path-loss exponent. We also show that using multiple antennas at each node does not fundamentally change the scaling law.

  • Topic Extraction for Documents Based on Compressibility Vector

    Nuo ZHANG  Toshinori WATANABE  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E95-D No:10
      Page(s):
    2438-2446

    Nowadays, there are a great deal of e-documents being accessed on the Internet. It would be helpful if those documents and significant extract contents could be automatically analyzed. Similarity analysis and topic extraction are widely used as document relation analysis techniques. Most of the methods being proposed need some processes such as stemming, stop words removal, and etc. In those methods, natural language processing (NLP) technology is necessary and hence they are dependent on the language feature and the dataset. In this study, we propose novel document relation analysis and topic extraction methods based on text compression. Our proposed approaches do not require NLP, and can also automatically evaluate documents. We challenge our proposal with model documents, URCS and Reuters-21578 dataset, for relation analysis and topic extraction. The effectiveness of the proposed methods is shown by the simulations.

  • A Miniaturized 2.5 GHz 8 W GaN HEMT Power Amplifier Module Using Selectively Anodized Aluminum Oxide Substrate

    Hae-Chang JEONG  Kyung-Whan YEOM  

     
    PAPER

      Vol:
    E95-C No:10
      Page(s):
    1580-1588

    In this paper, the design and fabrication of a miniaturized class-F 2.5 GHz 8 W power amplifier using a commercially available GaN HEMT bare chip from TriQuint and a Selectively Anodized Aluminum Oxide (SAAO) substrate are presented. The SAAO process was recently proposed and patented by Wavenics Inc., Daejeon, Korea, which provides the fabrication of small size circuit comparable to conventional MMIC and at drastically low cost due to the use of aluminum as a wafer. The advantage of low cost is especially promising for RF components fabrication in commercial applications like mobile communications. The fabricated power amplifier has a compact size of 4.4 4.4 mm2 and shows power added efficiency (PAE) of about 35% and harmonic suppression of above 30 dBc for second and third harmonics at an output power of 39 dBm.

  • Hidden Node due to Multiple Transmission Power Level for White Space Radio Operating in the TV Bands

    Chin-Sean SUM  Gabriel Porto VILLARDI  Mohammad Azizur RAHMAN  Junyi WANG  Zhou LAN  Chunyi SONG  Hiroshi HARADA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E95-A No:10
      Page(s):
    1749-1758

    This paper presents the analysis on hidden node due to multiple transmission power level and its potential impact to system performance of White Space radio operating in the TV bands, a.k.a TV white space (TVWS). For this purpose, a generic interference model for determining the hidden node occurrence probability based on realistic physical (PHY) layer model is developed. Firstly, the generic hidden node interference model is constructed considering typical TVWS radio network deployment scenario. Emphasis is given on cases where the hidden node scenario involves multiple transmission power level. Secondly, the PHY layer design and channel propagation are modeled to analyze the realistic operating range of the TVWS radio. By combining the hidden node interference model and the PHY layer/propagation models, the realistic probability of hidden node occurrence is calculated. Finally, the performance degradation in the victim receiver due to interference generated by the potential hidden node is quantified. As a result, for urban environment, it is found that for networks consisting of devices with multiple transmit power level, the probability of hidden node occurrence is similar to that of networks consisting of devices with uni-transmit power level, provided that the interferer-victim separation distance in the former is 800 m farther apart. Furthermore, this number may increase to a maximum of 1.1 km in a suburban environment. Also, it is found that if the hidden node actually occurs, a co-channel interference (CCI) of -15 dB typically causes a degradation of 2 dB in the victim receiver.

  • Router Power Reduction through Dynamic Performance Control Based on Traffic Predictions

    Hiroyuki ITO  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E95-B No:10
      Page(s):
    3130-3138

    We investigate the possibility of reducing router power consumption through dynamic router performance control. The proposed algorithm employs a typical low pass filter and, therefore, is simple enough to implement in each related element in a router. Numerical experiments using several real Internet traffic data sets show the degree of reduction in power consumption that can be achieved by using the proposed dynamic performance control algorithm. Detailed analysis clarifies the relationships among various parameter values that include packet loss ratios and the degree of power savings. We also propose a simple method based on the leaky bucket model, which can instantaneously estimate the packet loss ratio. It is shown that this simple method yields a good approximation of the results obtained by exact packet-by-packet simulation. The simple method easily enables us to derive appropriate parameter values for the control algorithm for given traffic that may differ in different segments of the Internet.

  • Cumulative Differential Nonlinearity Testing of ADCs

    Hungkai CHEN  Yingchieh HO  Chauchin SU  

     
    PAPER-Measurement Technology

      Vol:
    E95-A No:10
      Page(s):
    1768-1775

    This paper proposes a cumulative DNL (CDNL) test methodology for the BIST of ADCs. It analyzes the histogram of the DNL of a predetermined k LSBs distance to determine the DNL and gain error. The advantage of this method over others is that the numbers of required code bins and required samples are significantly reduced. The simulation and measurements of a 12-bit ADC show that the proposed CDNL has an error of less than 5% with only 212 samples, which can only be achieved with 222 samples using the conventional method. It only needs 16 registers to store code bins in this experiment.

  • Conjugate-Gradient Based Doubly Selective Channel Estimation and Equalization for OFDM Systems

    Dongjae LEE  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:10
      Page(s):
    3252-3260

    This paper addresses conjugate-gradient (CG) based pilot-assisted channel estimation and equalization in doubly selective channels for orthogonal frequency division multiplexing (OFDM) block transmissions. With the help of the discrete prolate spheroidal sequence, which shows flat mean-square error (MSE) curves for the reconstructed channels in the presence of Doppler frequency mismatch, a basis expansion model for a parsimonious channel representation over multiple OFDM blocks is developed, a system equation for the least square channel estimation under widely used pilot lattices, where the pilot symbols are irregularly placed in the subcarrier domain, is formulated by introducing carving matrices, and the standard CG method is applied to the system. Relying on the CG method again, the linear minimum mean-square error channel equalization is pursued without performing any matrix inversion, while elevating the convergence speed of the iterative algorithm with a simple preconditioner. Finally, we validate our schemes with numerical experiments on the integrated services digital broadcasting-terrestrial system in doubly-selective channels and determine the normalized MSE and uncoded bit error rate.

  • Miniaturized Antenna with High Radiation Efficiency Using Ground and Chip Capacitors

    Hyengcheul CHOI  Kyung-Young JUNG  Hyeongdong KIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E95-B No:10
      Page(s):
    3328-3331

    Ground antennas are suitable for use in mobile electronic devices due to their compactness. These ground antennas incorporate two capacitors for controlling the resonance frequency and a shorting loop for impedance matching. In this work, we compare the performance of a ground antenna with that of a meandered inverted-F antenna (IFA). It is numerically and experimentally shown that a ground antenna can yield simultaneous improvements in both the antenna size and radiation efficiency when compared to the meandered IFA. The bandwidth of the ground antenna for a voltage standing wave ratio (VSWR) of 3:1 is 240 MHz from 2350 MHz to 2590 MHz, while the minimum total antenna efficiency is 62% within the 2.4 GHz ISM band.

  • A Deception Mechanism against Compromised Station Attacks in IEEE 802.11 Channel-Hopping Systems

    Jaemin JEUNG  Seungmyeong JEONG  JaeSung LIM  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:10
      Page(s):
    3362-3364

    We propose a deception mechanism to combat a compromised station in IEEE 802.11 channel hopping systems. A compromised station can follow the hopping channels and continuously attack them, since it recognizes the channel-hopping sequence. The key concept of the deception mechanism is that an access point notifies a new hopping seed but not to the jammer, while a deception station deceives the jammer. Simulations show that the proposed scheme increases network throughput compared to conventional channel hopping schemes when they are under compromised station attacks.

  • Performance Improvement of IMR-Based NLOS Detection in Indoor Ultra Wide-Band TOA Localization

    Kazutaka FUKUDA  Eiji OKAMOTO  

     
    PAPER-Sensor Network

      Vol:
    E95-A No:10
      Page(s):
    1658-1666

    Sensor networks, in which many small terminals are wirelessly connected, have recently received considerable interest according to the development of wireless technology and electronic circuit. To provide advanced applications and services by the sensor networks, data collection including node location is essential. Hence the location estimation is important and many localization schemes have been proposed. Time of arrival (TOA) localization is one of the popular schemes because of its high estimation accuracy in ultra wide-band (UWB) sensor networks. However, a non-line-of-sight (NLOS) environment between the target and the anchor nodes causes a serious estimation error because the time is delayed more than its true one. Thus, the NLOS nodes should be detected and eliminated for estimation. As a well-known NLOS detection scheme, an iterative minimum residual (IMR) scheme which has low calculation complexity is used for detection. However, the detection error exists in IMR scheme due to the measurement error. Therefore, in this paper, we propose a new IMR-based NLOS detection scheme and show its performance improvement by computer simulations.

  • Process Scheduling Based Memory Energy Management for Multi-Core Mobile Devices

    Tiefei ZHANG  Tianzhou CHEN  

     
    PAPER-Systems and Control

      Vol:
    E95-A No:10
      Page(s):
    1700-1707

    The energy consumption is always a serious problem for mobile devices powered by battery. As the capacity and density of off-chip memory continuous to scale, its energy consumption accounts for a considerable amount of the whole system energy. There are therefore strong demands for energy efficient techniques towards memory system. Different from previous works, we explore the different power management modes of the off-chip memory by process scheduling for the multi-core mobile devices. In particular, we schedule the processes based on their memory access characteristics to maximize the number of the memory banks being in low power mode. We propose a fast approximation algorithm to solve the scheduling process problem for the dual-core mobile device. And for those equipped with more than two cores, we prove that the scheduling process problem is NP-Hard, and propose two heuristic algorithms. The proposed algorithms are evaluated through a series of experiments, for which we have encouraging results.

6581-6600hit(21534hit)