The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

6421-6440hit(21534hit)

  • Software FMEA for Safety-Critical System Based on Co-analysis of System Model and Software Model

    Guoqi LI  

     
    LETTER-Dependable Computing

      Vol:
    E95-D No:12
      Page(s):
    3101-3105

    Software FMEA is valuable and practically used for embedded software of safety-critical systems. In this paper, a novel method for Software FMEA is presented based on co-analysis of system model and software model. The method is hopeful to detect quantitative and dynamic effects by a targeted software failure. A typical application of the method is provided to illustrate the procedure and the applicable scenarios. In addition, a pattern is refined from the application for further reuse.

  • Two-Level Service-Oriented Architecture Based on Product-Line

    Joonseok PARK  Mikyeong MOON  Keunhyuk YEOM  

     
    PAPER-Software Engineering

      Vol:
    E95-D No:12
      Page(s):
    2971-2981

    Software product-line engineering is the successful reuse of technology when applied to component-based software development. The main concept and structure of this technology is developing reusable core assets by applying commonality and variability, and then developing new software reusing these core assets. Recently, the emergence of service-oriented environments, called SOA, has provided flexible reuse environments by reusing pre-developed component structure as service units; this is platform-independent and can integrate into heterogeneous environments. The core asset of an SOA is the service. Therefore, we can increase the reusability of an SOA by combining it with the concept of a product-line. These days, there exists research that combines SOA and product-lines, taking into account reusability. However, current research does not consider the interaction between the provider and consumer in SOA environments. Furthermore, this research tends to focus on more fragmentary aspects of product-line engineering, such as modeling and proposing variability in services. In this paper, we propose a mechanism named 2-Level SOA, including a supporting environment. This proposed mechanism deploys and manages the reusable service. In addition, by reusing and customizing this reusable service, we can develop and generate new services. Our proposed approach provides a structure to maximize the flexibility of SOA, develops services that consider systematic reuse, and constructs service-oriented applications by reusing this pre-developed reusable service. Therefore, our approach can increase both efficiency and productivity when developing service-oriented applications.

  • On d-Asymptotics for High-Dimensional Discriminant Analysis with Different Variance-Covariance Matrices

    Takanori AYANO  Joe SUZUKI  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E95-D No:12
      Page(s):
    3106-3108

    In this paper we consider the two-class classification problem with high-dimensional data. It is important to find a class of distributions such that we cannot expect good performance in classification for any classifier. In this paper, when two population variance-covariance matrices are different, we give a reasonable sufficient condition for distributions such that the misclassification rate converges to the worst value as the dimension of data tends to infinity for any classifier. Our results can give guidelines to decide whether or not an experiment is worth performing in many fields such as bioinformatics.

  • Robust Lightweight Embedded Virtualization Layer Design with Simple Hardware Assistance

    Tsung-Han LIN  Yuki KINEBUCHI  Tatsuo NAKAJIMA  

     
    PAPER-Computer System and Services

      Vol:
    E95-D No:12
      Page(s):
    2821-2832

    In this paper, we propose a virtualization architecture for a multi-core embedded system to provide more system reliability and security while maintaining performance and without introducing additional special hardware supports or implementing a complex protection mechanism in the virtualization layer. Embedded systems, especially consumer electronics, have often used virtualization. Virtualization is not a new technique, as there are various uses for both GPOS (General Purpose Operating System) and RTOS (Real Time Operating System). The surge of the multi-core platforms in embedded systems also helps consolidate the virtualization system for better performance and lower power consumption. Embedded virtualization design usually uses two approaches. The first is to use the traditional VMM, but it is too complicated for use in the embedded environment without additional special hardware support. The other approach uses the microkernel, which imposes a modular design. The guest systems, however, would suffer from considerable modifications in this approach, as the microkernel allows guest systems to run in the user space. For some RTOSes and their applications originally running in the kernel space, this second approach is more difficult to use because those codes use many privileged instructions. To achieve better reliability and keep the virtualization layer design lightweight, this work uses a common hardware component adopted in multi-core embedded processors. In most embedded platforms, vendors provide additional on-chip local memory for each physical core, and these local memory areas are only private to their cores. By taking advantage of this memory architecture, we can mitigate the above-mentioned problems at once. We choose to re-map the virtualization layer's program on the local memory, called SPUMONE, which runs all guest systems in the kernel space. Doing so, it can provide additional reliability and security for the entire system because the SPUMONE design in a multi-core platform has each instance installed on a separate processor core. This design differs from traditional virtualization layer design, and the content of each SPUMONE is inaccessible to the others. We also achieve this goal without adding overhead to the overall performance.

  • A Swarm Inspired Method for Efficient Data Transfer

    Yutaka KAWAI  Adil HASAN  Go IWAI  Takashi SASAKI  Yoshiyuki WATASE  

     
    PAPER-Network and Communication

      Vol:
    E95-D No:12
      Page(s):
    2852-2859

    In this paper we report on an approach inspired by Ant Colony Optimization (ACO) to provide a fault tolerant and efficient means of transferring data in dynamic environments. We investigate the problem of distributing data between a client and server by using pheromone equations. Ants choose the best source of food by selecting the strongest pheromone trail leaving the nest. The pheromone decays over-time and needs to be continually reinforced to define the optimum route in a dynamic environment. This resembles the dynamic environment for the distribution of data between clients and servers. Our approach uses readily available network and server information to construct a pheromone that determines the best server from which to download data. We demonstrate that the approach is self-optimizing and capable of adapting to dynamic changes in the environment.

  • Face Representation and Recognition with Local Curvelet Patterns

    Wei ZHOU  Alireza AHRARY  Sei-ichiro KAMATA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E95-D No:12
      Page(s):
    3078-3087

    In this paper, we propose Local Curvelet Binary Patterns (LCBP) and Learned Local Curvelet Patterns (LLCP) for presenting the local features of facial images. The proposed methods are based on Curvelet transform which can overcome the weakness of traditional Gabor wavelets in higher dimensions, and better capture the curve singularities and hyperplane singularities of facial images. LCBP can be regarded as a combination of Curvelet features and LBP operator while LLCP designs several learned codebooks from patch sets, which are constructed by sampling patches from Curvelet filtered facial images. Each facial image can be encoded into multiple pattern maps and block-based histograms of these patterns are concatenated into an histogram sequence to be used as a face descriptor. During the face representation phase, one input patch is encoded by one pattern in LCBP while multi-patterns in LLCP. Finally, an effective classifier called Weighted Histogram Spatially constrained Earth Mover's Distance (WHSEMD) which utilizes the discriminative powers of different facial parts, the different patterns and the spatial information of face is proposed. Performance assessment in face recognition and gender estimation under different challenges shows that the proposed approaches are superior than traditional ones.

  • Low Complexity Systolic Array Structure for Extended QRD-RLS Equalizer

    Ji-Hye SHIN  Young-Beom JANG  

     
    PAPER-Digital Signal Processing

      Vol:
    E95-A No:12
      Page(s):
    2407-2414

    In this paper, a new systolic array structure for the extended QR decomposition based recursive least-square (QRD-RLS) equalizer is proposed. The fact that the vectoring and rotation mode coordinate rotation digital computer (CORDIC) processors rotate in the same direction is used to show that the hardware complexity of the systolic array can be reduced. Furthermore, since the vectoring and rotation mode CORDIC processors in the proposed structure rotate simultaneously, operation time is also reduced. The performance of the proposed equalizer is analyzed by observing the flatness obtained by multiplying the frequency responses of the unknown channel with the proposed equalizer. Simulation results through hardware description language (HDL) coding and synthesis show that 23.8% of the chip implementation area can be reduced.

  • Non-orthogonal Access Scheme over Multiple Channels with Iterative Interference Cancellation and Fractional Sampling in OFDM Receiver

    Hiroyuki OSADA  Mamiko INAMORI  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:12
      Page(s):
    3837-3844

    A diversity scheme with Fractional Sampling (FS) in OFDM receivers has been investigated recently. FS path diversity makes use of the imaging components of the desired signal transmitted on the adjacent channel. To increase the diversity gain with FS the bandwidth of the transmit signal has to be enlarged. This leads to the reduction of spectrum efficiency. In this paper non-orthogonal access over multiple channels in the frequency domain with iterative interference cancellation (IIC) and FS is proposed. The proposed scheme transmits the imaging component non-orthogonally on the adjacent channel. In order to accommodate the imaging component, it is underlaid on the other desired signal. Through diversity with FS and IIC, non-orthogonal access on multiple channels is realized. Our proposed scheme can obtain diversity gains for non-orthogonal signals modulated with QPSK.

  • Unified Constant Geometry Fault Tolerant DCT/IDCT for Image Codec System on a Display Panel

    Jaehee YOU  

     
    PAPER-Digital Signal Processing

      Vol:
    E95-A No:12
      Page(s):
    2396-2406

    System-on-display panel design methodologies are proposed with the purpose of integrating DCT and IDCT on display panels for image codec and peripheral systems so as to reduce the bus data rate, memory size and power consumption. Unified constant geometry algorithms and architectures including recursive additions are proposed for DCT and IDCT butterfly computation, recursive additions and interconnections between stages. These schemes facilitate VLSI implementation and improve fault tolerance, suitable for low-yield SOP processing technologies through duplicate use of a PE as all the butterfly and recursive addition stages are composed and interconnected in a regular fashion. Efficient redundancy replacement methodologies optimizing the computation speed and the amount of hardware in various application areas are also described with testability and reliability issues. Finally, a performance analysis of speed, hardware and interconnection complexity is described with the proposed work's advantages.

  • A Hybrid Photonic Burst-Switched Interconnection Network for Large-Scale Manycore System

    Quanyou FENG  Huanzhong LI  Wenhua DOU  

     
    PAPER-Computer Architecture

      Vol:
    E95-D No:12
      Page(s):
    2908-2918

    With the trend towards increasing number of cores, for example, 1000 cores, interconnection network in manycore chips has become the critical bottleneck for providing communication infrastructures among on-chip cores as well as to off-chip memory. However, conventional on-chip mesh topologies do not scale up well because remote cores are generally separated by too many hops due to the small-radix routers within these networks. Moreover, projected scaling of electrical processor-memory network appears unlikely to meet the enormous demand for memory bandwidth while satisfying stringent power budget. Fortunately, recent advances in 3D integration technology and silicon photonics have provided potential solutions to these challenges. In this paper, we propose a hybrid photonic burst-switched interconnection network for large-scale manycore processors. We embed an electric low-diameter flattened butterfly into 3D stacking layers using integer linear programming, which results in a scalable low-latency network for inter-core packets exchange. Furthermore, we use photonic burst switching (PBS) for processor-memory network. PBS is an adaptation of optical burst switching for chip-scale communication, which can significantly improve the power efficiency by leveraging sub-wavelength, bandwidth-efficient optical switching. Using our physically-accurate network-level simulation environment, we examined the system feasibility and performances. Simulation results show that our hybrid network achieves up to 25% of network latency reduction and up to 6 times energy savings, compared to conventional on-chip mesh network and optical circuit-switched memory access scheme.

  • CPW-Fed Ultra-Wideband Lotus-Shaped Quasi-Fractal Antenna

    Dong-Jun KIM  Tae-Hak LEE  Jun-Ho CHOI  Young-Sik KIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E95-B No:12
      Page(s):
    3890-3894

    In this letter, a novel ultra-wideband circular quasi-fractal monopole antenna with a six-petaled lotus pattern is presented. The CPW-fed technique and quasi-fractal concept are used to achieve ultra-wideband characteristics. The size of the proposed antenna is 4250 mm2 with a lotus diameter of 19.8 mm. The proposed antenna exhibits ultra-wideband characteristics from 2.65 to 12.72 GHz, which corresponds to a fractional bandwidth of 131%. The measured radiation pattern of the proposed antenna is nearly omnidirectional.

  • On the Achievable Rate Region in the Optimistic Sense for Separate Coding of Two Correlated General Sources

    Hiroki KOGA  

     
    PAPER-Source Coding

      Vol:
    E95-A No:12
      Page(s):
    2100-2106

    This paper is concerned with coding theorems in the optimistic sense for separate coding of two correlated general sources X1 and X2. We investigate the achievable rate region Ropt (X1,X2) such that the decoding error probability caused by two encoders and one decoder can be arbitrarily small infinitely often under a certain rate constraint. We give an inner and an outer bounds of Ropt (X1,X2), where the outer bound is described by using new information-theoretic quantities. We also give two simple sufficient conditions under which the inner bound coincides with the outer bound.

  • A Low-Cost Bit-Error-Rate BIST Circuit for High-Speed ADCs Based on Gray Coding

    Ya-Ting SHYU  Ying-Zu LIN  Rong-Sing CHU  Guan-Ying HUANG  Soon-Jyh CHANG  

     
    PAPER-Analog Signal Processing

      Vol:
    E95-A No:12
      Page(s):
    2415-2423

    Real-time on-chip measurement of bit error rate (BER) for high-speed analog-to-digital converters (ADCs) does not only require expensive multi-port high-speed data acquisition equipment but also enormous post-processing. This paper proposes a low-cost built-in-self-test (BIST) circuit for high-speed ADC BER test. Conventionally, the calculation of BER requires a high-speed adder. The presented method takes the advantages of Gray coding and only needs simple logic circuits for BER evaluation. The prototype of the BIST circuit is fabricated along with a 5-bit high-speed flash ADC in a 90-nm CMOS process. The active area is only 90 µm 70 µm and the average power consumption is around 0.3 mW at 700 MS/s. The measurement of the BIST circuit shows consistent results with the measurement by external data acquisition equipment.

  • A Fully Programmable Reed-Solomon Decoder on a Multi-Core Processor Platform

    Bei HUANG  Kaidi YOU  Yun CHEN  Zhiyi YU  Xiaoyang ZENG  

     
    PAPER-Computer Architecture

      Vol:
    E95-D No:12
      Page(s):
    2939-2947

    Reed-Solomon (RS) codes are widely used in digital communication and storage systems. Unlike usual VLSI approaches, this paper presents a high throughput fully programmable Reed-Solomon decoder on a multi-core processor. The multi-core processor platform is a 2-Dimension mesh array of Single Instruction Multiple Data (SIMD) cores, and it is well suited for digital communication applications. By fully extracting the parallelizable operations of the RS decoding process, we propose multiple optimization techniques to improve system throughput, including: task level parallelism on different cores, data level parallelism on each SIMD core, minimizing memory access, and route length minimized task mapping techniques. For RS(255, 239, 8), experimental results show that our 12-core implementation achieve a throughput of 4.35 Gbps, which is much better than several other published implementations. From the results, it is predictable that the throughput is linear with the number of cores by our approach.

  • F-DSA: A Fast Dynamic Slot Assignment Protocol for Ad Hoc Networks

    Jong-Kwan LEE  Kyu-Man LEE  JaeSung LIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:12
      Page(s):
    3902-3905

    In this letter, we propose a fast dynamic slot assignment (F-DSA) protocol to reduce timeslot access delay of a newly arrived node in ad hoc networks. As there is no central coordinator, a newly arrived node needs separate negotiation with all the neighboring nodes for assigning slots to itself. Thus, it may result in network join delay and this becomes an obstacle for nodes to dynamically join and leave networks. In order to deal with this issue better, F-DSA simplifies the slot assignment process. It provides frequent opportunities to assign slots by using mini-slots to share control packets in a short time. Numerical analysis and extensive simulation show that F-DSA can significantly reduce the timeslot access delay compared with other existing slot assignment protocols. In addition, we investigate the effect of the mini-slot overhead on the performance.

  • Blind Box-Counting Based Detection of Low Observable Targets within Sea Clutter

    Nima M. POURNEJATIAN  Mohammad M. NAYEBI  Mohammad R. TABAN  

     
    PAPER-Sensing

      Vol:
    E95-B No:12
      Page(s):
    3863-3872

    Accurate modeling of sea clutter and detection of low observable targets within sea clutter are the major goals of radar signal processing applications. Recently, fractal geometry has been applied to the analysis of high range resolution radar sea clutters. The box-counting method is widely used to estimate fractal dimension but it has some drawbacks. We explain the drawbacks and propose a new fractal dimension based detector to increase detection performance in comparison with traditional detectors. Both statistically generated and real data samples are used to compare detector performance.

  • Robustness of Image Quality Factors for Environment Illumination

    Shogo MORI  Gosuke OHASHI  Yoshifumi SHIMODAIRA  

     
    LETTER-Image

      Vol:
    E95-A No:12
      Page(s):
    2498-2501

    This study examines the robustness of image quality factors in various types of environment illumination using a parameter design in the field of quality engineering. Experimental results revealed that image quality factors are influenced by environment illuminations in the following order: minimum luminance, maximum luminance and gamma.

  • User-Assisted Content Distribution in Information-Centric Network

    HyunYong LEE  Akihiro NAKAO  

     
    LETTER-Network

      Vol:
    E95-B No:12
      Page(s):
    3873-3874

    In this letter, we argue that user resources will be still useful in the information-centric network (ICN). From this point of view, we first examine how P2P utilizing user resources looks like in ICN. Then, we identify challenging research issues to utilize user resources in ICN.

  • A Perceptually Adaptive QIM Scheme for Efficient Watermark Synchronization

    Hwai-Tsu HU  Chu YU  

     
    LETTER-Information Network

      Vol:
    E95-D No:12
      Page(s):
    3097-3100

    This study presents an adaptive quantization index modulation scheme applicable on a small audio segment, which in turn allows the watermarking technique to withstand time-shifting and cropping attacks. The exploitation of auditory masking further ensures the robustness and imperceptibility of the embedded watermark. Experimental results confirmed the efficacy of this scheme against common signal processing attacks.

  • Parameterization of Perfect Sequences over a Composition Algebra

    Takao MAEDA  Takafumi HAYASHI  

     
    PAPER-Sequence

      Vol:
    E95-A No:12
      Page(s):
    2139-2147

    A parameterization of perfect sequences over composition algebras over the real number field is presented. According to the proposed parameterization theorem, a perfect sequence can be represented as a sum of trigonometric functions and points on a unit sphere of the algebra. Because of the non-commutativity of the multiplication, there are two definitions of perfect sequences, but the equivalence of the definitions is easily shown using the theorem. A composition sequence of sequences is introduced. Despite the non-associativity, the proposed theorem reveals that the composition sequence from perfect sequences is perfect.

6421-6440hit(21534hit)