The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

6441-6460hit(21534hit)

  • Blind Box-Counting Based Detection of Low Observable Targets within Sea Clutter

    Nima M. POURNEJATIAN  Mohammad M. NAYEBI  Mohammad R. TABAN  

     
    PAPER-Sensing

      Vol:
    E95-B No:12
      Page(s):
    3863-3872

    Accurate modeling of sea clutter and detection of low observable targets within sea clutter are the major goals of radar signal processing applications. Recently, fractal geometry has been applied to the analysis of high range resolution radar sea clutters. The box-counting method is widely used to estimate fractal dimension but it has some drawbacks. We explain the drawbacks and propose a new fractal dimension based detector to increase detection performance in comparison with traditional detectors. Both statistically generated and real data samples are used to compare detector performance.

  • A Fully Programmable Reed-Solomon Decoder on a Multi-Core Processor Platform

    Bei HUANG  Kaidi YOU  Yun CHEN  Zhiyi YU  Xiaoyang ZENG  

     
    PAPER-Computer Architecture

      Vol:
    E95-D No:12
      Page(s):
    2939-2947

    Reed-Solomon (RS) codes are widely used in digital communication and storage systems. Unlike usual VLSI approaches, this paper presents a high throughput fully programmable Reed-Solomon decoder on a multi-core processor. The multi-core processor platform is a 2-Dimension mesh array of Single Instruction Multiple Data (SIMD) cores, and it is well suited for digital communication applications. By fully extracting the parallelizable operations of the RS decoding process, we propose multiple optimization techniques to improve system throughput, including: task level parallelism on different cores, data level parallelism on each SIMD core, minimizing memory access, and route length minimized task mapping techniques. For RS(255, 239, 8), experimental results show that our 12-core implementation achieve a throughput of 4.35 Gbps, which is much better than several other published implementations. From the results, it is predictable that the throughput is linear with the number of cores by our approach.

  • Robustness of Image Quality Factors for Environment Illumination

    Shogo MORI  Gosuke OHASHI  Yoshifumi SHIMODAIRA  

     
    LETTER-Image

      Vol:
    E95-A No:12
      Page(s):
    2498-2501

    This study examines the robustness of image quality factors in various types of environment illumination using a parameter design in the field of quality engineering. Experimental results revealed that image quality factors are influenced by environment illuminations in the following order: minimum luminance, maximum luminance and gamma.

  • TSV Geometrical Variations and Optimization Metric with Repeaters for 3D IC

    Hung Viet NGUYEN  Myunghwan RYU  Youngmin KIM  

     
    PAPER-Integrated Electronics

      Vol:
    E95-C No:12
      Page(s):
    1864-1871

    This paper evaluates the impact of Through-Silicon Via (TSV) on the performance and power consumption of 3D circuitry. The physical and electrical model of TSV which considers the coupling effects with adjacent TSVs is exploited in our investigation. Simulation results show that the overall performance of 3D IC infused with TSV can be improved noticeably. The frequency of the ring oscillator in 4-tier stacking layout soars up to two times compared with one in 2D planar. Furthermore, TSV process variations are examined by Monte Carlo simulations to figure out the geometrical factor having more impact in manufacturing. An in-depth research on repeater associated with TSV offers a metric to compute the optimization of 3D systems integration in terms of performance and energy dissipation. By such optimization metric with 45 nm MOSFET used in our circuit layout, it is found that the optimal number of tiers in both performance and power consumption approaches 4 since the substantial TSV-TSV coupling effect in the worst case of interference is expected in 3D IC.

  • Classification of Prostate Histopathology Images Based on Multifractal Analysis

    Chamidu ATUPELAGE  Hiroshi NAGAHASHI  Masahiro YAMAGUCHI  Tokiya ABE  Akinori HASHIGUCHI  Michiie SAKAMOTO  

     
    PAPER-Pattern Recognition

      Vol:
    E95-D No:12
      Page(s):
    3037-3045

    Histopathology is a microscopic anatomical study of body tissues and widely used as a cancer diagnosing method. Generally, pathologists examine the structural deviation of cellular and sub-cellular components to diagnose the malignancy of body tissues. These judgments may often subjective to pathologists' skills and personal experiences. However, computational diagnosis tools may circumvent these limitations and improve the reliability of the diagnosis decisions. This paper proposes a prostate image classification method by extracting textural behavior using multifractal analysis. Fractal geometry is used to describe the complexity of self-similar structures as a non-integer exponent called fractal dimension. Natural complex structures (or images) are not self-similar, thus a single exponent (the fractal dimension) may not be adequate to describe the complexity of such structures. Multifractal analysis technique has been introduced to describe the complexity as a spectrum of fractal dimensions. Based on multifractal computation of digital imaging, we obtain two textural feature descriptors; i) local irregularity: α and ii) global regularity: f(α). We exploit these multifractal feature descriptors with a texton dictionary based classification model to discriminate cancer/non-cancer tissues of histopathology images of H&E stained prostate biopsy specimens. Moreover, we examine other three feature descriptors; Gabor filter bank, LM filter bank and Haralick features to benchmark the performance of the proposed method. Experiment results indicated that the performance of the proposed multifractal feature descriptor outperforms the other feature descriptors by achieving over 94% of correct classification accuracy.

  • Blocked United Algorithm for the All-Pairs Shortest Paths Problem on Hybrid CPU-GPU Systems

    Kazuya MATSUMOTO  Naohito NAKASATO  Stanislav G. SEDUKHIN  

     
    PAPER-Parallel and Distributed Computing

      Vol:
    E95-D No:12
      Page(s):
    2759-2768

    This paper presents a blocked united algorithm for the all-pairs shortest paths (APSP) problem. This algorithm simultaneously computes both the shortest-path distance matrix and the shortest-path construction matrix for a graph. It is designed for a high-speed APSP solution on hybrid CPU-GPU systems. In our implementation, two most compute intensive parts of the algorithm are performed on the GPU. The first part is to solve the APSP sub-problem for a block of sub-matrices, and the other part is a matrix-matrix “multiplication” for the APSP problem. Moreover, the amount of data communication between CPU (host) memory and GPU memory is reduced by reusing blocks once sent to the GPU. When a problem size (the number of vertices in a graph) is large enough compared to a block size, our implementation of the blocked algorithm requires CPU GPU exchanging of three blocks during a block computation on the GPU. We measured the performance of the algorithm implementation on two different CPU-GPU systems. A system containing an Intel Sandy Bridge CPU (Core i7 2600K) and an AMD Cayman GPU (Radeon HD 6970) achieves the performance up to 1.1 TFlop/s in a single precision.

  • Performance Evaluation of Joint MLD with Channel Coding Information for Control Signals Using Cyclic Shift CDMA and Block Spread CDMA Open Access

    Teruo KAWAMURA  Ryota TAKAHASHI  Hideyuki NUMATA  Nobuhiko MIKI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E95-B No:12
      Page(s):
    3688-3698

    This paper presents joint maximum likelihood detection (MLD) using channel coding information for orthogonal code division multiple access (CDMA) to decrease the required average received signal-to-noise power ratio (SNR) satisfying the target block error rate (BLER), and investigates the effect of joint MLD from the conventional coherent detection associated with channel coding. In the paper, we assume the physical uplink control channel (PUCCH) as specified in Release 8 Long-Term Evolution (LTE) by the 3rd Generation Partnership Project (3GPP) as the radio interface for the uplink control channel. First, we clarify the best scheme for combining correlation signals in two frequency-hopped slots and in two receiver diversity branches for joint MLD. Then, we show that the joint MLD without channel estimation, in which correlation signals are combined in squared form, decreases the required average received SNR compared to that for joint MLD with coherent combining of the correlation signals using channel estimation. Second, we show the effectiveness of joint MLD in terms of the decrease in the required average received SNR compared to the conventional coherent detection in various delay spread channels. Third, we present a comparison of the average BLER performance levels between cyclic shift (CS)-CDMA and block spread (BS)-CDMA using joint MLD. We show that when using joint MLD, BS-CDMA is superior to CS-CDMA due to a lower required received SNR in short delay spread environments and that in contrast, CS-CDMA provides a lower required received SNR compared to BS-CDMA in long delay spread environments.

  • Traffic Density-Based Broadcast Scheme for Vehicular Ad Hoc Networks

    Dong-Won KUM  Ajmal KHAN  You-Ze CHO  

     
    LETTER-Network

      Vol:
    E95-B No:12
      Page(s):
    3875-3878

    This paper proposes an efficient broadcast scheme based on traffic density measurement to mitigate broadcast storms in Vehicular Ad Hoc Networks (VANETs). In a VANET, the number of vehicles that rebroadcasts a message is closely related with the collision ratio of the message, so a well-designed broadcast scheme should consider traffic density when rebroadcasting a message. The proposed scheme introduces a traffic density measurement scheme and broadcast scheme for VANET. It is based on the slotted p-persistence scheme, but the rebroadcast procedure is enhanced and the rebroadcast probability p is controlled dynamically according to the estimated traffic density. Simulation results demonstrate that the proposed scheme outperforms existing schemes in terms of the end-to-end delay and collision ratio.

  • Ultra Linear Modulator with High Output RF Gain Using a 12 MMI Coupler

    Peng YUE  Qian-nan LI  Xiang YI  Tuo WANG  Zeng-ji LIU  Geng CHEN  Hua-xi GU  

     
    BRIEF PAPER-Lasers, Quantum Electronics

      Vol:
    E95-C No:12
      Page(s):
    1883-1886

    A novel and compact electro-optic modulator implemented by a combination of a 12 multimode interference (MMI) coupler and an integrated Mach-Zehnder interferometer (MZI) modulator consisting of a microring and a phase modulator (PM) is presented and analyzed theoretically. It is shown that the proposed modulator offers both ultra-linearity and high output RF gain simultaneously, with no requirements for complicated and precise direct current (DC) control.

  • A Fractional-N PLL with Dual-Mode Detector and Counter

    Fitzgerald Sungkyung PARK  Nikolaus KLEMMER  

     
    BRIEF PAPER-Integrated Electronics

      Vol:
    E95-C No:12
      Page(s):
    1887-1890

    A fractional-N phase-locked loop (PLL) is designed for the DigRF interface. The digital part of the PLL mainly consists of a dual-mode phase frequency detector (PFD), a digital counter, and a digital delta-sigma modulator (DSM). The PFD can operate on either 52 MHz or 26 MHz reference frequencies, depending on its use of only the rising edge or both the rising and the falling edges of the reference clock. The interface between the counter and the DSM is designed to give enough timing margin in terms of the signal round-trip delay. The circuitry is implemented using a 90-nm CMOS process technology with a 1.2-V supply, draining 1 mA.

  • On the Achievable Rate Region in the Optimistic Sense for Separate Coding of Two Correlated General Sources

    Hiroki KOGA  

     
    PAPER-Source Coding

      Vol:
    E95-A No:12
      Page(s):
    2100-2106

    This paper is concerned with coding theorems in the optimistic sense for separate coding of two correlated general sources X1 and X2. We investigate the achievable rate region Ropt (X1,X2) such that the decoding error probability caused by two encoders and one decoder can be arbitrarily small infinitely often under a certain rate constraint. We give an inner and an outer bounds of Ropt (X1,X2), where the outer bound is described by using new information-theoretic quantities. We also give two simple sufficient conditions under which the inner bound coincides with the outer bound.

  • A Jitter Insertion and Accumulation Model for Clock Repeaters

    Monica FIGUEIREDO  Rui L. AGUIAR  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E95-A No:12
      Page(s):
    2430-2442

    This paper presents a model to estimate jitter insertion and accumulation in clock repeaters. We propose expressions to estimate, with low computational effort, both static and dynamic clock jitter insertion in repeaters with different sizes, interconnects and slew-rates. It requires only the pre-characterization of a reference repeater, which can be accomplished with a small number of simulations or measurements. Furthermore, we propose expressions for dynamic jitter accumulation that considers the dual nature of power and ground noise impact on delay. The complete model can be used to replace time-consuming transient noise simulations when evaluating jitter in clock distribution systems, and provide valuable insights regarding the impact of design parameters on jitter. Presented results show that our models can estimate jitter insertion and accumulation with an error within 10% of simulation results, for typical designs, and accurately reflect the impact of changing design parameters.

  • Bayesian Estimation of Multi-Trap RTN Parameters Using Markov Chain Monte Carlo Method

    Hiromitsu AWANO  Hiroshi TSUTSUI  Hiroyuki OCHI  Takashi SATO  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E95-A No:12
      Page(s):
    2272-2283

    Random telegraph noise (RTN) is a phenomenon that is considered to limit the reliability and performance of circuits using advanced devices. The time constants of carrier capture and emission and the associated change in the threshold voltage are important parameters commonly included in various models, but their extraction from time-domain observations has been a difficult task. In this study, we propose a statistical method for simultaneously estimating interrelated parameters: the time constants and magnitude of the threshold voltage shift. Our method is based on a graphical network representation, and the parameters are estimated using the Markov chain Monte Carlo method. Experimental application of the proposed method to synthetic and measured time-domain RTN signals was successful. The proposed method can handle interrelated parameters of multiple traps and thereby contributes to the construction of more accurate RTN models.

  • A Design of Genetically Optimized Linguistic Models

    Keun-Chang KWAK  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E95-D No:12
      Page(s):
    3117-3120

    In this paper, we propose a method for designing genetically optimized Linguistic Models (LM) with the aid of fuzzy granulation. The fundamental idea of LM introduced by Pedrycz is followed and their design framework based on Genetic Algorithm (GA) is enhanced. A LM is designed by the use of information granulation realized via Context-based Fuzzy C-Means (CFCM) clustering. This clustering technique builds information granules represented as a fuzzy set. However, it is difficult to optimize the number of linguistic contexts, the number of clusters generated by each context, and the weighting exponent. Thus, we perform simultaneous optimization of design parameters linking information granules in the input and output spaces based on GA. Experiments on the coagulant dosing process in a water purification plant reveal that the proposed method shows better performance than the previous works and LM itself.

  • Implementation of the Broadcast Antenna with High Front-to-Back Ratio to Facilitate the Reuse of TV Channels

    Sangwon PARK  Youchan JEON  Myeongyu KIM  Sanghoon SONG  Jinwoo PARK  

     
    LETTER-Antennas and Propagation

      Vol:
    E95-B No:12
      Page(s):
    3886-3889

    In this letter, we present a method for improving the front-to-back ratio (FBR) of a broadcast antenna. The digitalization of terrestrial TV demands more efficient channel usage due to the reduction in TV bands after the switch-over. Thus, we designed an antenna with an FBR improved over -45 dB as compared to the -20 to -25 dB FBR range of existing antennas. We show experimentally that this antenna satisfies the required performance.

  • Comparing Operating Systems Scalability on Multicore Processors by Microbenchmarking

    Yan CUI  Yu CHEN  Yuanchun SHI  

     
    PAPER-Computer System and Services

      Vol:
    E95-D No:12
      Page(s):
    2810-2820

    Multicore processor architectures have become ubiquitous in today's computing platforms, especially in parallel computing installations, with their power and cost advantages. While the technology trend continues towards having hundreds of cores on a chip in the foreseeable future, an urgent question posed to system designers as well as application users is whether applications can receive sufficient support on today's operating systems for them to scale to many cores. To this end, people need to understand the strengths and weaknesses on their support on scalability and to identify major bottlenecks limiting the scalability, if any. As open-source operating systems are of particular interests in the research and industry communities, in this paper we choose three operating systems (Linux, Solaris and FreeBSD) to systematically evaluate and compare their scalability by using a set of highly-focused microbenchmarks for broad and detailed understanding their scalability on an AMD 32-core system. We use system profiling tools and analyze kernel source codes to find out the root cause of each observed scalability bottleneck. Our results reveal that there is no single operating system among the three standing out on all system aspects, though some system(s) can prevail on some of the system aspects. For example, Linux outperforms Solaris and FreeBSD significantly for file-descriptor- and process-intensive operations. For applications with intensive sockets creation and deletion operations, Solaris leads FreeBSD, which scales better than Linux. With the help of performance tools and source code instrumentation and analysis, we find that synchronization primitives protecting shared data structures in the kernels are the major bottleneck limiting system scalability.

  • Mastering Signal Processing in MPEG SAOC

    Kwangki KIM  Minsoo HAHN  Jinsul KIM  

     
    PAPER-Speech and Hearing

      Vol:
    E95-D No:12
      Page(s):
    3053-3059

    MPEG spatial audio object coding (SAOC) is a new audio coding standard which efficiently represents various audio objects as a down-mix signal and spatial parameters. MPEG SAOC has a backward compatibility with existing playback systems for the down-mix signal. If a mastering signal is used for providing CD-like sound quality instead of the down-mix signal, an output signal decoded with the mastering signal may be easily degraded due to the difference between the down-mix and the mastering signals. To successfully use the mastering signal in MPEG SAOC, the difference between two signals should be eliminated. As a simple mastering signal processing, we propose a mastering signal processing using the mastering down-mix gain (MDG) which is similar to the arbitrary down-mix gain of MPEG Surround. Also, we propose an enhanced mastering signal processing using the MDG bias in order to reduce quantization errors of the MDG. Experimental results show that the proposed schemes can improve sound quality of the output signal decoded with the mastering signal. Especially, the enhanced method shows better performance than the simple method in the aspects of the quantization errors and the sound quality.

  • Incorporating Contextual Information into Bag-of-Visual-Words Framework for Effective Object Categorization

    Shuang BAI  Tetsuya MATSUMOTO  Yoshinori TAKEUCHI  Hiroaki KUDO  Noboru OHNISHI  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E95-D No:12
      Page(s):
    3060-3068

    Bag of visual words is a promising approach to object categorization. However, in this framework, ambiguity exists in patch encoding by visual words, due to information loss caused by vector quantization. In this paper, we propose to incorporate patch-level contextual information into bag of visual words for reducing the ambiguity mentioned above. To achieve this goal, we construct a hierarchical codebook in which visual words in the upper hierarchy contain contextual information of visual words in the lower hierarchy. In the proposed method, from each sample point we extract patches of different scales, all of which are described by the SIFT descriptor. Then, we build the hierarchical codebook in which visual words created from coarse scale patches are put in the upper hierarchy, while visual words created from fine scale patches are put in the lower hierarchy. At the same time, by employing the corresponding relationship among these extracted patches, visual words in different hierarchies are associated with each other. After that, we design a method to assign patch pairs, whose patches are extracted from the same sample point, to the constructed codebook. Furthermore, to utilize image information effectively, we implement the proposed method based on two sets of features which are extracted through different sampling strategies and fuse them using a probabilistic approach. Finally, we evaluate the proposed method on dataset Caltech 101 and dataset Caltech 256. Experimental results demonstrate the effectiveness of the proposed method.

  • Transaction Ordering in Network-on-Chips for Post-Silicon Validation

    Amir Masoud GHAREHBAGHI  Masahiro FUJITA  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E95-A No:12
      Page(s):
    2309-2318

    In this paper, we have addressed the problem of ordering transactions in network-on-chips (NoCs) for post-silicon validation. The main idea is to extract the order of the transactions from the local partial orders in each NoC tile based on a set of “happened-before” rules, assuming transactions do not have a timestamp. The assumption is based on the fact that implementation and usage of a global time as timestamp in such systems may not be practical or efficient. When a new transaction is received in a tile, we send special messages to the neighboring tiles to inform them regarding the new transaction. The process of sending those special messages continues recursively in all the tiles that receive them until another such special message is detected. This way, we relate local orders of different tiles with each other. We show that our method can reconstruct the correct transaction orders when communication delays are deterministic. We have shown the effectiveness of our method by correctly ordering the transaction in NoCs with mesh and torus topologies with different sizes from 5*5 to 9*9. Also, we have implemented the proposed method in hardware to show its feasibility.

  • Interference-Aware Power Control for Relay-Enhanced Multicell Networks

    Xiaoyan HUANG  Yuming MAO  Supeng LENG  Yan ZHANG  Qin YU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:12
      Page(s):
    3845-3854

    This paper focuses on power control in relay-enhanced multicell networks with universal frequency reuse for maximizing the overall system throughput, subject to interference and noise impairments, and individual power constraints at both BSs and RSs. With a high signal-to-interference-plus-noise ratio (SINR) approximation, an energy efficiency based power allocation algorithm is proposed to achieve the maximum sum throughput with the least power consumption. Moreover, an iterative quasi-distributed power allocation algorithm is also presented, which is suitable for any SINR regime. Numerical results indicate that the proposed algorithms approach the optimal power allocation and the system performance can be significantly improved in terms of network throughput and energy efficiency.

6441-6460hit(21534hit)