The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

14841-14860hit(21534hit)

  • Programmable Electrooptic Wavelength Filter Using Cascaded Mode Converters

    Hideaki OKAYAMA  

     
    PAPER

      Vol:
    E86-C No:5
      Page(s):
    777-780

    A new device structure for electrooptic tunable wavelength filter is reported. Finger electrode electrooptic mode converters are placed on an optical waveguide. The drive voltage amplitude is changed along the propagation distance with a sinusoidal function. Changing the spatial period of sinusoidal voltage results in wavelength tuning. Structure uses interleaved mode converter groups generating cosine and sine function mode conversion strengths.

  • An Alternative Analysis of Linear Dynamic Hashing Algorithm

    Ayad SOUFIANE  Tsuyoshi ITOKAWA  Ryozo NAKAMURA  

     
    PAPER

      Vol:
    E86-A No:5
      Page(s):
    1075-1081

    The linear hashing is a well-known dynamic hashing algorithm designed for internal main memory as well as external secondary memory. Traditional analysis of this search algorithm has been proposed under the assumption that all keys are uniformly accessed. In this paper, we present a discrete analysis of the average search cost of the linear dynamic hashing algorithm for internal main memory in consideration of the frequency of access on each key. In the proposed discrete analysis, the number of probes itself is regarded as a random variable and its probability distribution is derived concretely. Furthermore, the evaluate formula derived from the proposed analysis can exactly evaluate the average search cost in conformity with any probability distribution of the frequency of access. The proposed analysis is compared to the traditional one provided that the frequency of access on each key is uniform, and the differences are discussed.

  • Adaptive Neural Network Based Harmonic Detection for Active Power Filter

    Md. RUKONUZZAMAN  Mutsuo NAKAOKA  

     
    LETTER-Energy in Electronics Communications

      Vol:
    E86-B No:5
      Page(s):
    1721-1725

    A novel signal processing technique using adaptive neural network algorithm is applied for the on-line detection of harmonic current components generated by nonlinear current loads in the single-phase diode bridge rectifier and it can efficiently determine the harmonic current components in real time. The validity of this active filtering processing system to compensate current harmonics is proved on the basis of simulation results.

  • Properties on the Average Number of Spanning Trees in Connected Spanning Subgraphs for an Undirected Graph

    Peng CHENG  Shigeru MASUYAMA  

     
    PAPER

      Vol:
    E86-A No:5
      Page(s):
    1027-1033

    Consider an undirected graph G=(V,E) with n (=|V|) vertices and m (=|E|) edges. It is well-known that the problem of computing the sequence Nn-1,Nn,...,Nm is #P-complete (see e.g.,[3]), where Ni denotes the number of connected spanning subgraphs with i (n-1!im) edges in G. In this paper, by proving new inequalities on the sequence Nn-1,Nn,...,Nm, we show an interesting and stronger property that the sequence γn-1,γn,...,γm, where γi denotes the average number of spanning trees in the connected spanning subgraphs with i edges, is a convex sequence as well as a monotonically increasing sequence, although this property does not hold for the sequence Nn-1,Nn,...,Nm.

  • Optical Burst Switching with Limited Deflection Routing Rules

    HyunSook KIM  SuKyoung LEE  JooSeok SONG  

     
    LETTER

      Vol:
    E86-B No:5
      Page(s):
    1550-1554

    Optical Burst Switching (OBS) is one of the most important switching technologies in future optical Internet. One of critical design issues in OBS is how to reduce burst dropping resulting from resource contention. Especially when traffic load is high, there should be frequent deflection routing as well as more contentions in an optical burst-switched network. The burst loss performance can be improved by implementing a proper deflection routing scheme. In this paper, we propose a limited deflection routing scheme to prevent injudicious deflection routing. The proposed scheme reduces unnecessary contentions resulting from deflection routing itself, increasing the utilization of network resource such as channels. Simulation tests were performed to evaluate the performance of the proposed scheme.

  • Baby Step Giant Step Algorithms in Point Counting of Hyperelliptic Curves

    Kazuto MATSUO  Jinhui CHAO  Shigeo TSUJII  

     
    PAPER

      Vol:
    E86-A No:5
      Page(s):
    1127-1134

    Counting the number of points of Jacobian varieties of hyperelliptic curves over finite fields is necessary for construction of hyperelliptic curve cryptosystems. Recently Gaudry and Harley proposed a practical scheme for point counting of hyperelliptic curves. Their scheme consists of two parts: firstly to compute the residue modulo a positive integer m of the order of a given Jacobian variety, and then search for the order by a square-root algorithm. In particular, the parallelized Pollard's lambda-method was used as the square-root algorithm, which took 50CPU days to compute an order of 127 bits. This paper shows a new variation of the baby step giant step algorithm to improve the square-root algorithm part in the Gaudry-Harley scheme. With knowledge of the residue modulo m of the characteristic polynomial of the Frobenius endomorphism of a Jacobian variety, the proposed algorithm provides a speed up by a factor m, instead of in square-root algorithms. Moreover, implementation results of the proposed algorithm is presented including a 135-bit prime order computed about 15 hours on Alpha 21264/667 MHz and a 160-bit order.

  • Quantum Algorithms for Intersection and Proximity Problems

    Kunihiko SADAKANE  Norito SUGAWARA  Takeshi TOKUYAMA  

     
    PAPER

      Vol:
    E86-A No:5
      Page(s):
    1113-1119

    We discuss applications of quantum computation to geometric data processing. Especially, we give efficient algorithms for intersection problems and proximity problems. Our algorithms are based on Brassard et al. 's amplitude amplification method, and analogous to Buhrman et al. 's algorithm for element distinctness. Revealing these applications is useful for classifying geometric problems, and also emphasizing potential usefulness of quantum computation in geometric data processing. Thus, the results will promote research and development of quantum computers and algorithms.

  • Realizing Highly Localized Exposure in Small Animals with Absorbing Material Covered Holder to Test Biological Effects of 1.5GHz Cellular Telephones

    Jianqing WANG  Osamu FUJIWARA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E86-B No:5
      Page(s):
    1660-1665

    In testing the possible biological effects of electromagnetic exposure from cellular telephones in small animals such as mice, it is essential to realize a highly localized head exposure as close as possible to that due to cellular telephones in humans. In this study, a 1.5GHz exposure setup was developed which has a highly localized specific absorption rate (SAR) of 2W/kg in the mouse brain and a low whole-body averaged SAR of 0.27W/kg. The low whole-body averaged SAR was realized by using a flexible magnetic sheet attachment on the mouse holder. Its validity has been carefully examined by both numerical simulation with an anatomically based mouse model and experimental simulation with a solid mouse phantom. Good agreement was obtained between the numerical and experimental results, which confirmed the effectiveness of the magnetic sheet attachment to the mouse holder.

  • An Efficient Representation of Scalars for Simultaneous Elliptic Scalar Multiplication

    Yasuyuki SAKAI  Kouichi SAKURAI  

     
    PAPER

      Vol:
    E86-A No:5
      Page(s):
    1135-1146

    The computational performance of cryptographic protocols using an elliptic curve strongly depends on the efficiency of the scalar multiplication. Some elliptic curve based cryptographic protocols, such as signature verification, require computation of multi scalar multiplications of kP+lQ, where P and Q are points on an elliptic curve. An efficient way to compute kP+lQ is to compute two scalar multiplications simultaneously, rather than computing each scalar multiplication separately. We introduce new efficient algorithms for simultaneous scalar multiplication on an elliptic curve. We also give a detailed analysis of the computational efficiency of our proposed algorithms.

  • Field Emission from Multilayered Carbon Films Consisting of Nano Seeded Diamond and Nanocluster Carbon, Deposited at Room-Temperature on Glass Substrates

    Akio HIRAKI  Bukinakere S. SATYANARAYANA  

     
    PAPER

      Vol:
    E86-C No:5
      Page(s):
    816-820

    We report field emission from multilayered cathodes grown on silicon and glass substrates. The cathode consist of a layer of nanoseeded diamond and overlayers of nanocluster carbon (sp2 bonded carbon) and tetrahedral amorphous carbon (predominantly sp3 bonded carbon). These films exhibit good field emission characteristics with an electron emission current density of 1µA/cm2, at a field of 5.1V/µm. The multilayered cathodes on silicon substrates exhibit even lower emission threshold field of about 1-2V/µm for an emission current density of 1µA/cm2. The emission is influenced by the nanoseeded diamond size and concentration and the properties of the nano carbon over layer.

  • Las Vegas, Self-Verifying Nondeterministic and Deterministic One-Way Multi-Counter Automata with Bounded Time

    Tsunehiro YOSHINAGA  Katsushi INOUE  

     
    LETTER

      Vol:
    E86-A No:5
      Page(s):
    1207-1212

    This paper investigates the accepting powers of deterministic, Las Vegas, self-verifying nondeterministic, and nondeterministic one-way multi-counter automata with time-bounds. We show that (1) for each k1, there is a language accepted by a Las Vegas one-way k-counter automaton operating in real time, but not accepted by any deterministic one-way k-counter automaton operating in linear time, (2) there is a language accepted by a self-verifying nondeterministic one-way 2-counter automaton operating in real time, but not accepted by any Las Vegas one-way multi-counter automaton operating in polynomial time, (3) there is a language accepted by a self-verifying nondeterministic one-way 1-counter automaton operating in real time, but not accepted by any deterministic one-way multi-counter automaton operating in polynomial time, and (4) there is a language accepted by a nondeterministic one-way 1-counter automaton operating in real time, but not accepted by any self-verifying nondeterministic one-way multi-counter automaton operating in polynomial time.

  • Fast Restoration on Network Control Plane Established through Photonic MPLS Routers

    Katsuhiro SHIMANO  Akio SAHARA  Kazuhiro NOGUCHI  Masafumi KOGA  Yoshihiro TAKIGAWA  Ken-ichi SATO  

     
    PAPER

      Vol:
    E86-B No:5
      Page(s):
    1522-1529

    This paper describes the requirements for fault recovery on photonic networks and proposes a fast restoration scheme for recovering optical networks. The proposed scheme is a type of pre-assignment restoration. The features of the scheme are that it is suitable for multi-recovery classes aimed at fine control of the optical paths and that it establishes harmonization between restoration control and distributed network control such as in IP networks. The scheme is implemented on Photonic multi protocol label switching (MPLS) routers. A restoration demonstration was performed and recovery was achieved within 500ms in the optical layer.

  • Detection of Summative Global Predicates

    Loon-Been CHEN  I-Chen WU  

     
    LETTER-Theory and Models of Software

      Vol:
    E86-D No:5
      Page(s):
    976-980

    In many distributed systems, tokens are fundamental tools to manage resources shared by processes. Thus, monitoring tokens has become a significant problem in developing the distributed programs. This paper formulates the problems of monitoring tokens in terms of detecting the special global predicates, called summative global predicates. In this paper, several algorithms to detect various summative global predicates are developed and their time complexities are discussed.

  • Multiple Antenna Transmitter Diversity by Using Adaptive Carrier Selection for OFDM-DS/CDMA in a Frequency Selective Fading Channel

    Kyesan LEE  Masao NAKAGAWA  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:5
      Page(s):
    1605-1611

    In this paper, we propose a new transmitter diversity. We propose a combined system with path diversity gain of the distributed antennas and frequency diversity gain of the multi-carrier. The proposed system transmits different data using several sub-carriers which are correlated, while, transmitting the same data using several sub-carriers which are decorrelated. It can achieve combined path and frequency diversity in a variable frequency selective fading channel. It provides high data rate services by transmitting the different data using each correlated carrier, and supports good quality by transmitting the same data on decorrelated carriers using multiple antennas. The proposed system is applicable to multimedia service and can achieve high quality according to channel condition. Thus, the proposed system is sufficiently flexible enough to very support a variety of video, image, voice and data services at a high level of quality.

  • Design and Implementation of RHiNET-2/NI0: A Reconfigurable Network Interface for Cluster Computing

    Tomonori YOKOYAMA  Naoyuki IZU  Jun-ichiro TSUCHIYA  Konosuke WATANABE  Hideharu AMANO  Tomohiro KUDOH  

     
    PAPER

      Vol:
    E86-D No:5
      Page(s):
    789-795

    A reconfigurable network interface called RHiNET-2/NI0 is developed for parallel processing of PCs distributed within one or more floors of a building. Two configurations: the HS (High Speed) configuration with only a high-speed primitive and the DSM (Distributed Shared Memory) configuration which supports sophisticated primitives can be selected by the network requirement. From the empirical evaluation, it appears that the HS configuration markedly improves the latency of data transfer compared with traditional network interfaces. On the other hand, the DSM configuration executes sophisticated primitives for distributed shared memory more than twice as fast as that of software implementation.

  • Sliding Multiple Phase Differential Detection of Trellis-Coded MDPSK-OFDM

    Chong Il KIM  Zhengyuan XU  Han Jong KIM  

     
    PAPER

      Vol:
    E86-B No:5
      Page(s):
    1591-1600

    In this paper, the Viterbi decoder containing new branch metrics of the squared Euclidean distance with multiple order phase differences is introduced in order to improve the bit error rate (BER) in the differential detection of the trellis-coded MDPSK-OFDM. The proposed Viterbi decoder is conceptually same as the sliding multiple phase differential detection method that uses the branch metric with multiple phase differences. Also, we describe the Viterbi algorithm in order to use this branch metrics. Our study shows that such a Viterbi decoder improves BER performance without sacrificing bandwidth and power efficiency. Also, the proposed algorithm can be used in the single carrier modulation.

  • Output Feedback Passification of Nonlinear Systems Not in Normal Form

    Young I. SON  Hyungbo SHIM  Nam H. JO  Jin H. SEO  

     
    LETTER-Systems and Control

      Vol:
    E86-A No:5
      Page(s):
    1312-1315

    In this paper, the problem of output feedback passification for nonlinear systems is considered. Contrary to the conventional methodologies, our approach does not require the normal form representation of the system. Consequent advantages include that the system need not have a well-defined relative degree. In particular, we present a necessary and sufficient condition for output feedback passification without relying on the normal form. The proposed condition finally leads to an extension for a recent result when the system does have a normal form.

  • Efficient Arithmetic in Optimal Extension Fields Using Simultaneous Multiplication

    Mun-Kyu LEE  Kunsoo PARK  

     
    LETTER-Information Security

      Vol:
    E86-A No:5
      Page(s):
    1316-1321

    A new algorithm for efficient arithmetic in an optimal extension field is proposed. The new algorithm improves the speeds of multiplication, squaring, and inversion by performing two subfield multiplications simultaneously within a single integer multiplication instruction of a CPU. Our algorithm is used to improve throughputs of elliptic curve operations.

  • Circuit Analysis and Design of Low-Power CMOS Tapered Buffer

    Kuo-Hsing CHENG  Wei-Bin YANG  

     
    PAPER-Electronic Circuits

      Vol:
    E86-C No:5
      Page(s):
    850-858

    Decreased power dissipation and transient voltage drops in CMOS power distribution networks are important for high-speed deep submicrometer CMOS integrated circuits. In this paper, three CMOS buffers based on the charge-transfer, split-path and bootstrapped techniques to reduce the power dissipation and transient voltage drop in power supply are proposed. First, the inverted-delay-unit is used in the low-power inverted-delay-unit (LPID) CMOS buffer to eliminate the short-circuit current of the output stage. Second, the low-swing bootstrapped feedback-controlled split-path (LBFS) CMOS buffer is proposed to eliminate the short-circuit current of the output stage by using the feedback-controlled split-path method. The dynamic power dissipation of the LBFS CMOS buffer can be reduced by limiting the gate voltage swing of the output stage. Moreover, the propagation delay of the LBFS CMOS buffer is also reduced by non-full-swing gate voltage of the output stage. Third, the charge-recovery scheme is used in the charge-transfer feedback-controlled 4-split-path (CRFS) CMOS buffer to recovery and pull up the gate voltage of the output stage for reducing power-delay product and power line noise. Based on HSPICE simulation results, the power-delay product and the transient voltage drop in power supply of the proposed three CMOS buffers can be reduced by 20% to 40% as compared to conventional CMOS tapered buffer under various capacitive load.

  • Development of an Internet Server System for Personal Live-Broadcasting

    Sangmoon LEE  Sinjun KANG  Byungseok MIN  Hagbae KIM  

     
    PAPER-Broadcast Systems

      Vol:
    E86-B No:5
      Page(s):
    1673-1678

    In this paper, we present an Internet personal live-broadcasting server system. Our solution is not only for experts but also for amateur users who want to broadcast using simple multimedia equipment. For scalable broadcasting services, we developed multiple-channel establishment and channel expansion. Concurrent services for a large number of broadcasting channels are effectively provided. Also, the capacity of channels can be expanded as the number of participants increases. Furthermore, for the sake of complete live broadcasting with high-quality transmission, the system supports both TCP (transmission control protocol) and UDP (user datagram protocol) according to the status of network environments as well as the received packet loss in the user system. The performance of the system is effectively evaluated at such practical commercial sites as well-known community and E-business sites.

14841-14860hit(21534hit)