The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

17301-17320hit(21534hit)

  • Indexing Method for Three-Dimensional Position Estimation

    Iris FERMIN  Sudhanshu SEMWAL  Jun OHYA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:12
      Page(s):
    1597-1604

    Indexing techniques usually are used in model-based object recognition and ray tracing algorithms. In this paper we present a new method for estimating the three-dimensional position of a subject (resp. object) in a circumscribed space based on an indexing method. We construct two and three-dimensional indices of a space, which are used to estimate the three-dimensional position by an interpolation technique. There are two processes in estimating the three-dimensional position of a subject (resp. object): preprocessing and three-dimensional position estimation. We have implemented this idea using stereo camera, and tested by using two different sizes of a grid pattern. Promising results for preprocessing and 3D position estimation are presented. Moreover, we show that this approach can also be extended for multiple cameras.

  • Scattering and Absorption of Electromagnetic Plane Waves by a Multilayered Resistive Strip Grating Embedded in a Dielectric Slab

    Tatyana L. ZINENKO  Akira MATSUSHIMA  Yoichi OKUNO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E82-C No:12
      Page(s):
    2255-2264

    An accurate and efficient numerical solution is presented for a two-dimensional electromagnetic wave scattering from a multilayered resistive strip grating embedded in a dielectric slab. Both E- and H-waves are treated. The problem is formulated into a set of integral equations, which is solved by the moment method accompanied by a regularization procedure. The resultant set of linear algebraic equations has the form of the Fredholm second kind, and therefore yields stable and accurate numerical solutions. The power distribution is computed for several grating parameters. Attention is paid to seek a set of parameters that maximizes absorption in the strips. The low frequency approximate formulas are also derived. This analysis would be useful in designing electromagnetic wave absorbers.

  • Design of Optimal Array Processors for Two-Step Division-Free Gaussian Elimination

    Shietung PENG  Stanislav G. SEDUKHIN  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E82-D No:12
      Page(s):
    1503-1511

    The design of array processors for solving linear systems using two-step division-free Gaussian elimination method is considered. The two-step method can be used to improve the systems based on the one-step method in terms of numerical stability as well as the requirements for high-precision. In spite of the rather complicated computations needed at each iteration of the two-step method, we develop an innovative parallel algorithm whose data dependency graph meets the requirements for regularity and locality. Then we derive two-dimensional array processors by adopting a systematic approach to investigate the set of all admissible solutions and obtain the optimal array processors under linear time-space scheduling. The array processors is optimal in terms of the number of processing elements used.

  • Digital Differentiators Based on Taylor Series

    Ishtiaq Rasool KHAN  Ryoji OHBA  

     
    LETTER-Digital Signal Processing

      Vol:
    E82-A No:12
      Page(s):
    2822-2824

    The explicit formula for the coefficients of maximally linear digital differentiators is derived by the use of Taylor series. A modification in the formula is proposed to extend the effective passband of the differentiator with the same number of coefficients.

  • Method of Implementing GFR Service in Large-Scale Networks Using ABR Control Mechanism and Its Performance Analysis

    Ryoichi KAWAHARA  Yuki KAMADO  Masaaki OMOTANI  Shunsaku NAGATA  

     
    PAPER-Communication Networks and Services

      Vol:
    E82-B No:12
      Page(s):
    2081-2094

    This paper proposes implementing guaranteed frame rate (GFR) service using the available bit rate (ABR) control mechanism in large-scale networks. GFR is being standardized as a new ATM service category to provide a minimum cell rate (MCR) guarantee to each virtual channel (VC) at the frame level. Although ABR also can support MCR, a source must adjust its cell emission rate according to the network congestion indication. In contrast, GFR service is intended for users who are not equipped to comply with the source behavior rules required by ABR. It is expected that many existing users will fall into this category. As one implementation of GFR, weighted round robin (WRR) with per-VC queueing at each switch is well known. However, WRR is hard to implement in a switch supporting a large number of VCs because it needs to determine in one cell time which VC queue should be served. In addition, it may result in ineffective bandwidth utilization at the network level because its control mechanism is closed at the node level. On the other hand, progress in ABR service standardization has led to the development of some ABR control algorithms that can handle a large number of connections. Thus, we propose implementing GFR using an already developed ABR control mechanism that can cope with many connections. It consists of an explicit rate (ER) control mechanism and a virtual source/virtual destination (VS/VD) mechanism. Allocating VSs/VDs to edge switches and ER control to backbone switches enables us to apply ABR control up to the entrance of a network, which results in effective bandwidth utilization at the network level. Our method also makes it possible to share resources between GFR and ABR connections, which decreases the link cost. Through simulation analysis, we show that our method can work better than WRR under various traffic conditions.

  • Stability Analysis for Global Performance of Flow Control in High-Speed Networks Based on Statistical Physics

    Masaki AIDA  Kenji HORIKAWA  

     
    PAPER-Switching and Communication Processing

      Vol:
    E82-B No:12
      Page(s):
    2095-2106

    This paper focuses on flow control in high-speed and large-scale networks. Each node in the network handles its local traffic flow only on the basis of the information it knows. It is preferable, however, that the decision making of each node leads to high performance of the whole network. To this end, the relationship between local decision making and global performance of flow control is the essential object. We propose phenomenological models of flow control of high-speed and large-scale networks, and investigate the stability of these models.

  • A New Polling-Based Dynamic Slot Assignment Scheme for Broadband Wireless Access Systems

    Fusao NUNO  Yoichi MATSUMOTO  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    2031-2040

    This paper proposes a new polling-based dynamic slot assignment (DSA) scheme. With the rapid progress of wireless access systems, wireless data communication will become more and more attractive. In wireless data communication, an efficient DSA scheme is required to enhance system throughput, since the capacity of radio links is often smaller than that of wired links. A polling-based DSA scheme is typically used in centralized slot assignment control systems. It, however, is difficult to assign the slots to the targeted mobile terminals in a fair-share manner if only a polling-based scheme is used, especially in unbalanced-traffic circumstances, as revealed later. To solve this problem, we propose the exponential decreasing and proportional increasing rate control as is employed in available bit rate (ABR) service in ATM so that fair slot assignment is achieved even in heavily-unbalanced-traffic circumstances. Moreover, so that an AP operating with a large number of MTs can avoid long transmission delays, a polling-based resource request scheme with random access is featured in a new algorithm. Simulations verify that the proposed scheme offers fair slot assignment for each user while maintaining high throughput and short delay performance.

  • Performance of Millimeter-Wave BPSK System with Single Cochannel Interference

    Chien-Ching CHIU  Chi-Ping WANG  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    2049-2054

    This paper use a site-specific model to characterize the performance of millimeter wave BPSK system with single cochannel interference. Shooting and bouncing ray/image techniques are applied to compute the impulse responses for concrete-wall-partition rooms and plasterboard-wall-partition rooms. By using the impulse responses of these multipath channels, the BERs (Bit Error Rates) for high-speed BPSK (binary phase shift keying) systems with phase and timing recovery circuits are calculated. In addition, the carrier-to-interference ratio is also computed. Numerical results show that the interference for the plasterboard-wall-partition rooms is more severe than that for the concrete-wall-partition rooms.

  • Semi-Automatic Tool for Aligning a Parameterized CAD Model to Stereo Image Pairs

    Chu-Song CHEN  Kuan-Chung HUNG  Yi-Ping HUNG  Lin-Lin CHEN  Chiou-Shann FUH  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:12
      Page(s):
    1582-1588

    Fully automatic reconstruction of 3D models from images is well-known to be a difficult problem. For many applications, a limited amount of human assistance is allowed and can greatly reduce the complexity of the 3D reconstruction problem. In this paper, we present an easy-to-use method for aligning a parameterized 3D CAD model to images taken from different views. The shape parameters of the 3D CAD model can be recovered accurately. Our work is composed of two parts. In the first part, we developed an interactive tool which allows the user to associate the features in the CAD model to the features in the 2D images. This interactive tool is designed to achieve efficiency and accuracy. In the second part, 3D information extracted from different stereo views are integrated together by using an optimization technique to obtain accurate shape parameters. Some experimental results have been shown to demonstrate the accuracy and usefulness of the recovered CAD model.

  • Evaluation of Two Load-Balancing Primary-Backup Process Allocation Schemes

    Heejo LEE  Jong KIM  Sung Je HONG  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E82-D No:12
      Page(s):
    1535-1544

    In this paper, we show two process allocation schemes to tolerate multiple faults when the primary-backup replication method is used. The first scheme, called multiple backup scheme, is running multiple backup processes for each process to tolerate multiple faults. The second scheme, called regenerative backup scheme, is running only one backup process for each process, but re-generates backup processes for processes that do not have a backup process after a fault occurrence to keep the primary-backup process pair available. In both schemes, we propose heuristic process allocation methods for balancing loads in spite of the occurrence of faults. Then we evaluate and compare the performance of the proposed heuristic process allocation methods using simulation. Next, we analyze the reliability of two schemes based on their fault-tolerance capability. For the analysis of fault-tolerance capability, we find the degree of fault tolerance for each scheme. Then we find the reliability of each scheme using Markov chains. The comparison results of two schemes indicate that the regenerative single backup process allocation scheme is more suitable than the multiple backup allocation scheme.

  • Software Traffic Management Architecture for Multimedia Flows over a Real-Time Microkernel

    Yoshito TOBE  Yosuke TAMURA  Hideyuki TOKUDA  

     
    PAPER-Communication Software

      Vol:
    E82-B No:12
      Page(s):
    2116-2125

    Traffic management schemes such as Connection Admission Control (CAC), policing, and traffic shaping are important to provide multimedia communications with better Quality of Service (QoS). In the conventional model, admission control and policing are done at intermediate nodes, and traffic shaping is done at the edge of a network. However, QoS of communications should be defined between tasks or threads rather than between hosts. Therefore traffic management inside a host is as important as that in networks. We propose software-based traffic management architecture over a real-time microkernel. The architecture focuses on the interface between a network driver and user threads calling the driver. We categorized services of communication threads into three classes: Real-Time at Guaranteed Rate (RT-GR), Real-Time at Available Rate (RT-AR), and Best-Effort (BE). Our architecture is designed for an environment containing a mixture of these services. In the architecture, a sender periodic thread of RT-GR or RT-AR is executed such that the sending rate matches a user-specified rate. The network driver monitors the per-flow rate of injected data and discards the data if the injected rate exceeds the user-specified rate. To avoid the continuous discarding of data, the sending thread can adjust its sending rate by periodically looking at logged data concerning the rate. RT-AR service can achieve more than the specified rate when bandwidth is available. The scheme of software traffic management is effective in attaining higher throughput not only for full-duplex Ethernet but also for ATM because the difference of rate between hardware and software is reduced. In this paper, we describe the design and implementation of the software-based traffic management architecture on Real-Time Mach. The results of performance evaluations demonstrate that our traffic management scheme performs well for full-duplex Ethernet.

  • Decorrelating Detector for Multi-Processing Gain CDMA Systems

    Hiroyuki HIRAIWA  Masaaki KATAYAMA  Takaya YAMAZATO  Akira OGAWA  

     
    LETTER

      Vol:
    E82-A No:12
      Page(s):
    2774-2777

    The design of a liner decorrelating detector for multi-processing gain code-division multiple-access (MPG-CDMA) systems is proposed, and its performance is discussed. As the result, the performance improvement by this detector is confirmed. Also, it is found that that the degrees of the noise enhancement depend on the processing gains of the signals.

  • Design and Implementation of a High-Speed File Server Based on PC-UNIX

    Tetsuo TSUJIOKA  Kazuaki OBANA  Tetsuya ONODA  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2191-2200

    Recent attractive high-speed networks require network file servers with high-speed read performance to deliver huge multimedia files, like voice or movie files. This paper proposes new design and implementation techniques that yield high-speed file servers based on UNIX. The techniques are request reduction, in which contiguous blocks on UNIX file system (UFS) are gathered for reducing the number of command requests from the file system to the device driver, and a direct access method for cutting through the buffer cache mechanism. A file server prototype based on a general-purpose personal computer (PC) is constructed and its performance is evaluated. The preliminary results show that the prototype achieves high-speed file read performance in excess of 100 Mbytes/s even on an OpenBSD PC-UNIX system with 3 RAID controllers and 9 hard drives in RAID level 0 configuration.

  • Linearized Constant Peak-Power Coded OFDM Transmission for Broadband Wireless Access Systems

    Shuta UWANO  Yoichi MATSUMOTO  Masato MIZOGUCHI  Masahiro UMEHIRA  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    1932-1938

    Orthogonal frequency division multiplexing (OFDM) signals suffer nonlinear distortion within the transmitter, in the high-power amplifiers in particular. This paper proposes a nonlinear distortion compensation technique for OFDM signals, which incorporates a baseband predistortion with a constant peak-power OFDM (CP-OFDM). CP-OFDM fixes the envelope-peak amplitude to a constant value while maintaining the linearity of the inverse fast Fourier transform (IFFT) outputs; consequently, the baseband predistorter entirely compensates the nonlinear distortion. Simulation and experimental results verify that the proposed technique significantly reduces out-of-band power emission and adjacent channel interference (ACI) more than 10 dB respectively.

  • A Novel Error Control Algorithm for Reducing Transmission Delay in Real-Time Mobile Video Communication

    Naoto MATOBA  Yasushi KONDO  Hiroyuki OHTSUKA  Toshiaki TANAKA  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    2021-2030

    This paper proposes a short delay, error-resilient video transmission scheme for mobile radio channels. Compressed video data are sensitive to channel error. Video coding schemes such as H. 263 use variable length coding so channel error can cause synchronization failure in the decoder and fatally degrade the reconstructed video sequence by triggering intra- and inter-frame error propagation. ARQ prevents all forms of error propagation but significantly increases the transmission delay of the video frame. We propose a new error control scheme to reduces the delay incurred by ARQ; the receiving buffer can transmits the video frame data to the video decoder even if not all ARQ frames containing the video frame are received. The encoder transmits additional information, the Macro Block (MB) size, in the video frame header. Upon receiving this information, the receiving buffer can determine MB length which allows MB de-synchronization to be prevented. For example, if an ARQ frame is lost, the decoder determines the position of the missing MB and replace this MB with the equivalent block in the previous video frame; this prevents intra-frame error propagation. When all ARQ frames are received and decoded correctly, the video frame in the reference video memory is replaced with the correctly decoded one. Simulation results show that the proposed scheme can minimize the delay and the reduction in frame rate caused by retransmission control without intra- and inter-error propagation.

  • Induced Slider Vibration over Various LZT Media at Small Disk-Slider Clearance --A Challenge to 0.5 µinch Glide Testing

    Seng Ghee TAN  Thomas LIEW  Teck Ee LOH  Teck Seng LOW  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2155-2164

    Both frequency- and time-domain analyses of glide signals from a PZT glide-slider flying over a laser zone-textured (LZT) thin film disk medium were used to determine the slider vibration at a small disk-slider clearance. Slider vibration was found to be particularly dependent on the uniformly placed laser bump and the effects due to the air-bearing stiffness over the LZT medium. We found that a high density of small, pointed laser bumps (10X) has a more distinct impact on airflow than large, jagged-rim craterlike laser bumps (1X) on the slider. We therefore investigated the effect of laser bump density on the slider vibration, and found that marginally higher laser bump density (3X versus 2X) results in higher slider vibration. While resonant vibration has been a major glide problem, the effects of laser bump density have also recently become important in the face of ultralow glide height, 0.5 µ" (12 nm). Its influence can be clearly observed when the disk-slider clearance becomes very small. At such an ultrasmall disk-slider clearance, even minimal slider vibration can be detrimental to the head-disk interface. Taking into account the various contributions of slider vibration and considering possible damage to the head-disk interface, it is clear that the optimization of laser bump design should go beyond just the glide height and coefficient of stiction. It should take into account the effects of laser bump height, density and spatial distribution on vibration-induced flying height variation while maintaining a low glide height and coefficient of stiction. An ideal LZT medium should therefore have low bump height to enable low glide height, i. e. , 0.5 µ" (12 nm), but specific bump shapes and sufficient density to achieve low stiction. Laser bump density should, however, be controlled to moderate its effect on slider vibration and possibly disk-slider collision (297 words).

  • Thermal Stability Study for Anisotropic and Isotropic Hard Disk Media

    Lea Peng TAN  Jian Ping WANG  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2171-2175

    Thermal stability of anisotropic and isotropic Co alloy thin-film media is investigated. The orientation ratio of CoCrTa(Pt)/Cr media was controlled by the mechanical texture of the NiP/Al substrates. Bulk magnetic properties, delta M curves and time decay of magnetization in the circumferential and radial directions were measured. The maximum magnetic viscosity coefficient calculated from the time decay of magnetization in the circumferential direction was higher than that in the radial direction for a mechanically textured sample, while it was similar in both directions for a non-textured sample. The magnetic viscosity coefficient in the circumferential direction is smaller than that in the radial direction when the reverse field is in the range of the demagnetization field for thin-film recording media. This implies that an anisotropic sample (namely, a sample with a high orientation ratio) will be more thermally stable when it is not exposed to a large external magnetic field.

  • Experimental Study of Slider-Disk Interaction in a Nanometer Spaced Head-Disk Interface

    Bo LIU  Yao-Long ZHU  Ying-Hui LI  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2148-2154

    A head-disk spacing tester that includes the effect of lubricant will be necessary if the slider-disk interaction is to be considered. The interaction and interaction induced spacing variation can be quantitatively characterized by optical method and by replacing the functional disk media with a glass disk covered with a carbon layer and a lubricant layer of the same materials and the same layer thickness as the functional disk media. This paper reports a tester configuration based on that concept. Experimental investigations into the nanometer spaced head-disk interface with such a setup are presented also. Results indicate that the lubricant plays an important role in slider-disk interaction and the vibration of the slider-disk interface. Two types of interface vibration were noticed: contact vibration and bouncing vibration. For the bouncing case, the natural frequency of air-bearing and its fold frequencies will be excited and air-bearing plays more important role in the determination of the slider vibration, comparing with the contact-vibration case.

  • Probability Model and Its Application on the Interaction of Nano-Spaced Slider/Disk Interface

    Wei HUA  Bo LIU  Gang SHENG  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2139-2147

    The effect of surface roughness is crucial for contact recording and proximity recording. In this paper a probability model is developed for investigation of the influence of surface roughness on flying performance and the contact force of the slider. Simulations are conducted for both the contact recording slider and the proximity recording slider, and the results are well coordinated with the reported experimental results and the self-conducted experimental results. Studies are further extended to the characterization of the roughness of the air bearing surface and the disk surface that may support head/disk spacing between 5 nm and 15 nm.

  • Vehicle Mobility Characterization Based on Measurements and Its Application to Cellular Communication Systems

    Takehiko KOBAYASHI  Noriteru SHINAGAWA  Yoneo WATANABE  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    2055-2060

    Future cellular communication systems will be called upon to provide multimedia services (voice, data, and video) for various user platforms (pedestrians, cars, and trains) that have a variety of mobility characteristics. Knowledge of mobility characteristics is essential for planning, designing and operating communication networks. The position data of selected vehicles (taxis) have been measured by using the Global Positioning System at 1-s intervals. Those data are used for evaluating mobility characteristics, such as probabilistic distributions of speed, cell dwell time, and cell crossover rate of vehicles, assuming that cells are hypothetically laid over the loci of the vehicles. The cell dwell time of vehicles is found to follow a lognormal distribution, rather than a conventionally-presumed negative exponential distribution. When the holding time distribution and random origination of calls along the loci are assumed, the properties of the cell dwell time and the handoff rate of terminals communicating in the hypothetical cellular systems are also estimated from the measured data.

17301-17320hit(21534hit)