The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

1881-1900hit(21534hit)

  • Transferring Adaptive Bit Rate Streaming Quality Models from H.264/HD to H.265/4K-UHD Open Access

    Pierre LEBRETON  Kazuhisa YAMAGISHI  

     
    PAPER-Network

      Pubricized:
    2019/06/25
      Vol:
    E102-B No:12
      Page(s):
    2226-2242

    In this paper the quality of adaptive bit rate video streaming is investigated and two state-of-the-art models, i.e., the NTT audiovisual quality-estimation and ITU-T P.1203 models, are considered. This paper shows how these models can be applied to new conditions, e.g., 4K ultra high definition (4K-UHD) videos encoded using H.265, considering that they were originally designed and trained for HD videos encoded with H.264. Six subjective evaluations involving up to 192 participants and a large variety of test conditions, e.g., durations from 10sec to 3min, coding-quality variation, and stalling events, were conducted on both TV and mobile devices. Using the subjective data, this paper addresses how models and coefficients can be transferred to new conditions. A comparison between state-of-the-art models is conducted, showing the performance of transferred and retrained models. It is found that other video-quality estimation models, such as VMAF, can be used as input of the NTT and ITU-T P.1203 long-term pooling modules, allowing these other video-quality-estimation models to support the specificities of adaptive bit-rate-streaming scenarios. Finally, all retrained coefficients are detailed in this paper allowing future work to directly reuse the results of this study.

  • Distributed Transmission for Secure Wireless Links Based on a Secret-Sharing Method

    Masaaki YAMANAKA  ShenCong WEI  Jingbo ZOU  Shuichi OHNO  Shinichi MIYAMOTO  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/06/17
      Vol:
    E102-B No:12
      Page(s):
    2286-2296

    This paper proposes a secure distributed transmission method that establishes multiple transmission routes in space to a destination. In the method, the transmitted information is divided into pieces of information by a secret-sharing method, and the generated pieces are separately transmitted to the destination through different transmission routes using individually-controlled antenna directivities. As the secret-sharing method can divide the transmitted information into pieces in such a manner that nothing about the original information is revealed unless all the divided pieces are obtained, the secrecy of the transmitted information is greatly improved from an information-theoretic basis. However, one problem is that it does not perform well in the vicinity around the receiver. This is due to the characteristics of distributed transmission that all distributed pieces of information must eventually gather at the destination; an eavesdropper can obtain the necessary pieces to reconstruct the original information. Then, this paper expands the distributed transmission method into a two-way communication scheme. By adopting the distributed transmission in both communication directions, a secure link can be provided as a feedback channel to enhance the secrecy of the transmitted information. The generation of the shared pieces of information is given with signal forms, and the secrecy of the proposed method is evaluated based on the signal transmission error rates as determined by computer simulation.

  • Characteristics and Applicability of Frequency Sharing Criteria in the Broadcasting Satellite Link Open Access

    Kazuyoshi SHOGEN  Thong PHAM VIET  

     
    PAPER-Satellite Communications

      Pubricized:
    2019/06/17
      Vol:
    E102-B No:12
      Page(s):
    2297-2303

    Two frequency sharing criteria for BSS (Broadcasting-Satellite Service) are enacted in Sect.1 of Annex 1 to Appendix 30 to Radio Regulations. These two criteria are pfd (power flux-density) and EPM (Equivalent Protection Margin) values. In this paper, the two criteria are compared and studied from the view point of applicability to the sharing cases between BSS and BSS. In particular, it is shown that in some cases, the EPM criterion contributes to alleviate the problem of “sensitive satellite network”, i.e., one that has relatively low transmission power and is very weak against interference and blocks the new satellite to enter. Disclaimer The views and positions expressed by the authors are strictly personal and do not constitute, nor can be interpreted as, the position of the International Telecommunication Union on the topics addressed in this paper.

  • On-Chip Cache Architecture Exploiting Hybrid Memory Structures for Near-Threshold Computing

    Hongjie XU  Jun SHIOMI  Tohru ISHIHARA  Hidetoshi ONODERA  

     
    PAPER

      Vol:
    E102-A No:12
      Page(s):
    1741-1750

    This paper focuses on power-area trade-off axis to memory systems. Compared with the power-performance-area trade-off application on the traditional high performance cache, this paper focuses on the edge processing environment which is becoming more and more important in the Internet of Things (IoT) era. A new power-oriented trade-off is proposed for on-chip cache architecture. As a case study, this paper exploits a good energy efficiency of Standard-Cell Memory (SCM) operating in a near-threshold voltage region and a good area efficiency of Static Random Access Memory (SRAM). A hybrid 2-level on-chip cache structure is first introduced as a replacement of 6T-SRAM cache as L0 cache to save the energy consumption. This paper proposes a method for finding the best capacity combination for SCM and SRAM, which minimizes the energy consumption of the hybrid cache under a specific cache area constraint. The simulation result using a 65-nm process technology shows that up to 80% energy consumption is reduced without increasing the die area by replacing the conventional SRAM instruction cache with the hybrid 2-level cache. The result shows that energy consumption can be reduced if the area constraint for the proposed hybrid cache system is less than the area which is equivalent to a 8kB SRAM. If the target operating frequency is less than 100MHz, energy reduction can be achieved, which implies that the proposed cache system is suitable for low-power systems where a moderate processing speed is required.

  • A Low Area Overhead Design Method for High-Performance General-Synchronous Circuits with Speculative Execution

    Shimpei SATO  Eijiro SASSA  Yuta UKON  Atsushi TAKAHASHI  

     
    PAPER

      Vol:
    E102-A No:12
      Page(s):
    1760-1769

    In order to obtain high-performance circuits in advanced technology nodes, design methodology has to take the existence of large delay variations into account. Clock scheduling and speculative execution have overheads to realize them, but have potential to improve the performance by averaging the imbalance of maximum delay among paths and by utilizing valid data available earlier than worst-case scenarios, respectively. In this paper, we propose a high-performance digital circuit design method with speculative executions with less overhead by utilizing clock scheduling with delay insertions effectively. The necessity of speculations that cause overheads is effectively reduced by clock scheduling with delay insertion. Experiments show that a generated circuit achieves 26% performance improvement with 1.3% area overhead compared to a circuit without clock scheduling and without speculative execution.

  • Adaptive-Partial Template Update with Center-Shifting Recovery for High Frame Rate and Ultra-Low Delay Deformation Matching

    Songlin DU  Yuhao XU  Tingting HU  Takeshi IKENAGA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1872-1881

    High frame rate and ultra-low delay matching system plays an important role in various human-machine interactive applications, which demands better performance in matching deformable and out-of-plane rotating objects. Although many algorithms have been proposed for deformation tracking and matching, few of them are suitable for hardware implementation due to complicated operations and large time consumption. This paper proposes a hardware-oriented template update and recovery method for high frame rate and ultra-low delay deformation matching system. In the proposed method, the new template is generated in real time by partially updating the template descriptor and adding new keypoints simultaneously with the matching process in pixels (proposal #1), which avoids the large inter-frame delay. The size and shape of region of interest (ROI) are made flexible and the Hamming threshold used for brute-force matching is adjusted according to pixel position and the flexible ROI (proposal #2), which solves the problem of template drift. The template is recovered by the previous one with a relative center-shifting vector when it is judged as lost via region-wise difference check (proposal #3). Evaluation results indicate that the proposed method successfully achieves the real-time processing of 784fps at the resolution of 640×480 on field-programmable gate array (FPGA), with a delay of 0.808ms/frame, as well as achieves satisfactory deformation matching results in comparison with other general methods.

  • Representative Spatial Selection and Temporal Combination for 60fps Real-Time 3D Tracking of Twelve Volleyball Players on GPU

    Xina CHENG  Yiming ZHAO  Takeshi IKENAGA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1882-1890

    Real-time 3D players tracking plays an important role in sports analysis, especially for the live services of sports broadcasting, which have a strict limitation on processing time. For these kinds of applications, 3D trajectories of players contribute to high-level game analysis such as tactic analysis and commercial applications such as TV contents. Thus real-time implementation for 3D players tracking is expected. In order to achieve real-time for 60fps videos with high accuracy, (that means the processing time should be less than 16.67ms per frame), the factors that limit the processing time of target algorithm include: 1) Large image area of each player. 2) Repeated processing of multiple players in multiple views. 3) Complex calculation of observation algorithm. To deal with the above challenges, this paper proposes a representative spatial selection and temporal combination based real-time implementation for multi-view volleyball players tracking on the GPU device. First, the representative spatial pixel selection, which detects the pixels that mostly represent one image region to scale down the image spatially, reduces the number of processing pixels. Second, the representative temporal likelihood combination shares observation calculation by using the temporal correlation between images so that the times of complex calculation is reduced. The experiments are based on videos of the Final and Semi-Final Game of 2014 Japan Inter High School Games of Men's Volleyball in Tokyo Metropolitan Gymnasium. On the GPU device GeForce GTX 1080Ti, the tracking system achieves real-time on 60fps videos and keeps the tracking accuracy higher than 97%.

  • Acoustic Design Support System of Compact Enclosure for Smartphone Using Deep Neural Network

    Kai NAKAMURA  Kenta IWAI  Yoshinobu KAJIKAWA  

     
    PAPER-Engineering Acoustics

      Vol:
    E102-A No:12
      Page(s):
    1932-1939

    In this paper, we propose an automatic design support system for compact acoustic devices such as microspeakers inside smartphones. The proposed design support system outputs the dimensions of compact acoustic devices with the desired acoustic characteristic. This system uses a deep neural network (DNN) to obtain the relationship between the frequency characteristic of the compact acoustic device and its dimensions. The training data are generated by the acoustic finite-difference time-domain (FDTD) method so that many training data can be easily obtained. We demonstrate the effectiveness of the proposed system through some comparisons between desired and designed frequency characteristics.

  • A Novel Three-Point Windowed Interpolation DFT Method for Frequency Measurement of Real Sinusoid Signal

    Kai WANG  Yiting GAO  Lin ZHOU  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:12
      Page(s):
    1940-1945

    The windowed interpolation DFT methods have been utilized to estimate the parameters of a single frequency and multi-frequency signal. Nevertheless, they do not work well for the real-valued sinusoids with closely spaced positive- and negative- frequency. In this paper, we describe a novel three-point windowed interpolation DFT method for frequency measurement of real-valued sinusoid signal. The exact representation of the windowed DFT with maximum sidelobe decay window (MSDW) is constructed. The spectral superposition of positive- and negative-frequency is considered and calculated to improve the estimation performance. The simulation results match with the theoretical values well. In addition, computer simulations demonstrate that the proposed algorithm provides high estimation accuracy and good noise suppression capability.

  • High-quality Hardware Integer Motion Estimation for HEVC/H.265 Encoder Open Access

    Chuang ZHU  Jie LIU  Xiao Feng HUANG  Guo Qing XIANG  

     
    BRIEF PAPER-Integrated Electronics

      Pubricized:
    2019/08/13
      Vol:
    E102-C No:12
      Page(s):
    853-856

    This paper reports a high-quality hardware-friendly integer motion estimation (IME) scheme. According to different characteristics of CTU content, the proposed method adopts different adaptive multi-resolution strategies coupled with accurate full-PU modes IME at the finest level. Besides, by using motion vector derivation, IME for the second reference frame is simplified and hardware resource is saved greatly through processing element (PE) sharing. It is shown that the proposed architecture can support the real-time processing of 4K-UHD @60fps, while the BD-rate is just increased by 0.53%.

  • Interworking Layer of Distributed MQTT Brokers

    Ryohei BANNO  Jingyu SUN  Susumu TAKEUCHI  Kazuyuki SHUDO  

     
    PAPER-Information Network

      Pubricized:
    2019/07/30
      Vol:
    E102-D No:12
      Page(s):
    2281-2294

    MQTT is one of the promising protocols for various data exchange in IoT environments. Typically, those environments have a characteristic called “edge-heavy”, which means that things at the network edge generate a massive volume of data with high locality. For handling such edge-heavy data, an architecture of placing multiple MQTT brokers at the network edges and making them cooperate with each other is quite effective. It can provide higher throughput and lower latency, as well as reducing consumption of cloud resources. However, under this kind of architecture, heterogeneity could be a vital issue. Namely, an appropriate product of MQTT broker could vary according to the different environment of each network edge, even though different products are hard to cooperate due to the MQTT specification providing no interoperability between brokers. In this paper, we propose Interworking Layer of Distributed MQTT brokers (ILDM), which enables arbitrary kinds of MQTT brokers to cooperate with each other. ILDM, designed as a generic mechanism independent of any specific cooperation algorithm, provides APIs to facilitate development of a variety of algorithms. By using the APIs, we also present two basic cooperation algorithms. To evaluate the usefulness of ILDM, we introduce a benchmark system which can be used for both a single broker and multiple brokers. Experimental results show that the throughput of five brokers running together by ILDM is improved 4.3 times at maximum than that of a single broker.

  • Energy Minimization over m-Branched Enumeration for Generalized Linear Subspace Clustering Open Access

    Chao ZHANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/09/19
      Vol:
    E102-D No:12
      Page(s):
    2485-2492

    In this paper, we consider the clustering problem of independent general subspaces. That is, with given data points lay near or on the union of independent low-dimensional linear subspaces, we aim to recover the subspaces and assign the corresponding label to each data point. To settle this problem, we take advantages of both greedy strategy and energy minimization strategy to propose a simple yet effective algorithm based on the assumption that an m-branched (i.e., perfect m-ary) tree which is constructed by collecting m-nearest neighbor points in each node has a high probability of containing the near-exact subspace. Specifically, at first, subspace candidates are enumerated by multiple m-branched trees. Each tree starts with a data point and grows by collecting nearest neighbors in the breadth-first search order. Then, subspace proposals are further selected from the enumeration to initialize the energy minimization algorithm. Eventually, both the proposals and the labeling result are finalized by iterative re-estimation and labeling. Experiments with both synthetic and real-world data show that the proposed method can outperform state-of-the-art methods and is practical in real application.

  • High Performance Application Specific Stream Architecture for Hardware Acceleration of HOG-SVM on FPGA

    Piyumal RANAWAKA  Mongkol EKPANYAPONG  Adriano TAVARES  Mathew DAILEY  Krit ATHIKULWONGSE  Vitor SILVA  

     
    PAPER

      Vol:
    E102-A No:12
      Page(s):
    1792-1803

    Conventional sequential processing on software with a general purpose CPU has become significantly insufficient for certain heavy computations due to the high demand of processing power to deliver adequate throughput and performance. Due to many reasons a high degree of interest could be noted for high performance real time video processing on embedded systems. However, embedded processing platforms with limited performance could least cater the processing demand of several such intensive computations in computer vision domain. Therefore, hardware acceleration could be noted as an ideal solution where process intensive computations could be accelerated using application specific hardware integrated with a general purpose CPU. In this research we have focused on building a parallelized high performance application specific architecture for such a hardware accelerator for HOG-SVM computation implemented on Zynq 7000 FPGA. Histogram of Oriented Gradients (HOG) technique combined with a Support Vector Machine (SVM) based classifier is versatile and extremely popular in computer vision domain in contrast to high demand for processing power. Due to the popularity and versatility, various previous research have attempted on obtaining adequate throughput on HOG-SVM. This research with a high throughput of 240FPS on single scale on VGA frames of size 640x480 out performs the best case performance on a single scale of previous research by approximately a factor of 3-4. Further it's an approximately 15x speed up over the GPU accelerated software version with the same accuracy. This research has explored the possibility of using a novel architecture based on deep pipelining, parallel processing and BRAM structures for achieving high performance on the HOG-SVM computation. Further the above developed (video processing unit) VPU which acts as a hardware accelerator will be integrated as a co-processing peripheral to a host CPU using a novel custom accelerator structure with on chip buses in a System-On-Chip (SoC) fashion. This could be used to offload the heavy video stream processing redundant computations to the VPU whereas the processing power of the CPU could be preserved for running light weight applications. This research mainly focuses on the architectural techniques used to achieve higher performance on the hardware accelerator and on the novel accelerator structure used to integrate the accelerator with the host CPU.

  • Skew-Aware Collective Communication for MapReduce Shuffling

    Harunobu DAIKOKU  Hideyuki KAWASHIMA  Osamu TATEBE  

     
    PAPER-Computer System

      Pubricized:
    2019/07/29
      Vol:
    E102-D No:12
      Page(s):
    2389-2399

    This paper proposes and examines the three in-memory shuffling methods designed to address problems in MapReduce shuffling caused by skewed data. Coupled Shuffle Architecture (CSA) employs a single pairwise all-to-all exchange to shuffle both blocks, units of shuffle transfer, and meta-blocks, which contain the metadata of corresponding blocks. Decoupled Shuffle Architecture (DSA) separates the shuffling of meta-blocks and blocks, and applies different all-to-all exchange algorithms to each shuffling process, attempting to mitigate the impact of stragglers in strongly skewed distributions. Decoupled Shuffle Architecture with Skew-Aware Meta-Shuffle (DSA w/ SMS) autonomously determines the proper placement of blocks based on the memory consumption of each worker process. This approach targets extremely skewed situations where some worker processes could exceed their node memory limitation. This study evaluates implementations of the three shuffling methods in our prototype in-memory MapReduce engine, which employs high performance interconnects such as InfiniBand and Intel Omni-Path. Our results suggest that DSA w/ SMS is the only viable solution for extremely skewed data distributions. We also present a detailed investigation of the performance of CSA and DSA in various skew situations.

  • Natural Gradient Descent of Complex-Valued Neural Networks Invariant under Rotations

    Jun-ichi MUKUNO  Hajime MATSUI  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E102-A No:12
      Page(s):
    1988-1996

    The natural gradient descent is an optimization method for real-valued neural networks that was proposed from the viewpoint of information geometry. Here, we present an extension of the natural gradient descent to complex-valued neural networks. Our idea is to use the Hermitian extension of the Fisher information matrix. Moreover, we generalize the projected natural gradient (PRONG), which is a fast natural gradient descent algorithm, to complex-valued neural networks. We also consider the advantage of complex-valued neural networks over real-valued neural networks. A useful property of complex numbers in the complex plane is that the rotation is simply expressed by the multiplication. By focusing on this property, we construct the output function of complex-valued neural networks, which is invariant even if the input is changed to its rotated value. Then, our complex-valued neural network can learn rotated data without data augmentation. Finally, through simulation of online character recognition, we demonstrate the effectiveness of the proposed approach.

  • A Lightweight Method to Evaluate Effect of Approximate Memory with Hardware Performance Monitors

    Soramichi AKIYAMA  

     
    PAPER-Computer System

      Pubricized:
    2019/09/02
      Vol:
    E102-D No:12
      Page(s):
    2354-2365

    The latency and the energy consumption of DRAM are serious concerns because (1) the latency has not improved much for decades and (2) recent machines have huge capacity of main memory. Device-level studies reduce them by shortening the wait time of DRAM internal operations so that they finish fast and consume less energy. Applying these techniques aggressively to achieve approximate memory is a promising direction to further reduce the overhead, given that many data-center applications today are to some extent robust to bit-flips. To advance research on approximate memory, it is required to evaluate its effect to applications so that both researchers and potential users of approximate memory can investigate how it affects realistic applications. However, hardware simulators are too slow to run workloads repeatedly with different parameters. To this end, we propose a lightweight method to evaluate effect of approximate memory. The idea is to count the number of DRAM internal operations that occur to approximate data of applications and calculate the probability of bit-flips based on it, instead of using heavy-weight simulators. The evaluation shows that our system is 3 orders of magnitude faster than cycle accurate simulators, and we also give case studies of evaluating effect of approximate memory to some realistic applications.

  • Low-Profile of Monocone Antenna by Using Planar Inverted-F Antenna Structure

    Kazuya MATSUBAYASHI  Naobumi MICHISHITA  Hisashi MORISHITA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/06/17
      Vol:
    E102-B No:12
      Page(s):
    2260-2266

    The monocone antenna is a type of monopole antenna that has wideband characteristics. This paper proposes a low-profile monocone antenna with a planar inverted-F structure. The characteristics of the proposed antenna are analyzed through a simulation. The results demonstrate that the low-profile antenna offers wideband performance, and the relative bandwidth of VSWR ≤ 2 is found to be more than 190%. In addition, miniaturization of the monocone antenna is elucidated. The proposed antenna is prototyped, and the validity of the simulation is verified through measurements.

  • Security Performance Analysis of Joint Multi-Relay and Jammer Selection for Physical-Layer Security under Nakagami-m Fading Channel

    Guangna ZHANG  Yuanyuan GAO  Huadong LUO  Nan SHA  Mingxi GUO  Kui XU  

     
    LETTER-Cryptography and Information Security

      Vol:
    E102-A No:12
      Page(s):
    2015-2020

    In this paper, we investigate a novel joint multi-relay and jammer selection (JMRJS) scheme in order to improve the physical layer security of wireless networks. In the JMRJS scheme, all the relays succeeding in source decoding are selected to assist in the source signal transmission and meanwhile, all the remaining relay nodes are employed to act as friendly jammers to disturb the eavesdroppers by broadcasting artificial noise. Based on the more general Nakagami-m fading channel, we analyze the security performance of the JMRJS scheme for protecting the source signal against eavesdropping. The exact closed-form expressions of outage probability (OP) and intercept probability (IP) for the JMRJS scheme over Nakagami-m fading channel are derived. Moreover, we analyze the security-reliability tradeoff (SRT) of this scheme. Simulation results show that as the number of decode-and-forward (DF)relay nodes increases, the SRT of the JMRJS scheme improves notably. And when the transmit power is below a certain value, the SRT of the JMRJS scheme consistently outperforms the joint single-relay and jammer selection (JSRJS) scheme and joint equal-relay and jammer selection (JERJS) scheme respectively. In addition, the SRT of this scheme is always better than that of the multi-relay selection (MRS) scheme.

  • Accelerating the Smith-Waterman Algorithm Using the Bitwise Parallel Bulk Computation Technique on the GPU

    Takahiro NISHIMURA  Jacir Luiz BORDIM  Yasuaki ITO  Koji NAKANO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/07/09
      Vol:
    E102-D No:12
      Page(s):
    2400-2408

    The bulk execution of a sequential algorithm is to execute it for many different inputs in turn or at the same time. It is known that the bulk execution of an oblivious sequential algorithm can be implemented to run efficiently on a GPU. The bulk execution supports fine grained bitwise parallelism, allowing it to achieve high acceleration over a straightforward sequential computation. The main contribution of this work is to present a Bitwise Parallel Bulk Computation (BPBC) to accelerate the Smith-Waterman Algorithm (SWA) using the affine gap penalty. Thus, our idea is to convert this computation into a circuit simulation using the BPBC technique to compute multiple instances simultaneously. The proposed BPBC technique for the SWA has been implemented on the GPU and CPU. Experimental results show that the proposed BPBC for the SWA accelerates the computation by over 646 times as compared to a single CPU implementation and by 6.9 times as compared to a multi-core CPU implementation with 160 threads.

  • New Sub-Band Adaptive Volterra Filter for Identification of Loudspeaker

    Satoshi KINOSHITA  Yoshinobu KAJIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:12
      Page(s):
    1946-1955

    Adaptive Volterra filters (AVFs) are usually used to identify nonlinear systems, such as loudspeaker systems, and ordinary adaptive algorithms can be used to update the filter coefficients of AVFs. However, AVFs require huge computational complexity even if the order of the AVF is constrained to the second order. Improving calculation efficiency is therefore an important issue for the real-time implementation of AVFs. In this paper, we propose a novel sub-band AVF with high calculation efficiency for second-order AVFs. The proposed sub-band AVF consists of four parts: input signal transformation for a single sub-band AVF, tap length determination to improve calculation efficiency, switching the number of sub-bands while maintaining the estimation accuracy, and an automatic search for an appropriate number of sub-bands. The proposed sub-band AVF can improve calculation efficiency for which the dominant nonlinear components are concentrated in any frequency band, such as loudspeakers. A simulation result demonstrates that the proposed sub-band AVF can realize higher estimation accuracy than conventional efficient AVFs.

1881-1900hit(21534hit)