The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

1981-2000hit(21534hit)

  • Hardware-Based Principal Component Analysis for Hybrid Neural Network Trained by Particle Swarm Optimization on a Chip

    Tuan Linh DANG  Yukinobu HOSHINO  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E102-A No:10
      Page(s):
    1374-1382

    This paper presents a hybrid architecture for a neural network (NN) trained by a particle swarm optimization (PSO) algorithm. The NN is implemented on the hardware side while the PSO is executed by a processor on the software side. In addition, principal component analysis (PCA) is also applied to reduce correlated information. The PCA module is implemented in hardware by the SystemVerilog programming language to increase operating speed. Experimental results showed that the proposed architecture had been successfully implemented. In addition, the hardware-based NN trained by PSO (NN-PSO) program was faster than the software-based NN trained by the PSO program. The proposed NN-PSO with PCA also obtained better recognition rates than the NN-PSO without-PCA.

  • Enhancing the Performance of Cuckoo Search Algorithm with Multi-Learning Strategies Open Access

    Li HUANG  Xiao ZHENG  Shuai DING  Zhi LIU  Jun HUANG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/07/09
      Vol:
    E102-D No:10
      Page(s):
    1916-1924

    The Cuckoo Search (CS) is apt to be trapped in local optimum relating to complex target functions. This drawback has been recognized as the bottleneck of its widespread use. This paper, with the purpose of improving CS, puts forward a Cuckoo Search algorithm featuring Multi-Learning Strategies (LSCS). In LSCS, the Converted Learning Module, which features the Comprehensive Learning Strategy and Optimal Learning Strategy, tries to make a coordinated cooperation between exploration and exploitation, and the switching in this part is decided by the transition probability Pc. When the nest fails to be renewed after m iterations, the Elite Learning Perturbation Module provides extra diversity for the current nest, and it can avoid stagnation. The Boundary Handling Approach adjusted by Gauss map is utilized to reset the location of nest beyond the boundary. The proposed algorithm is evaluated by two different tests: Test Group A(ten simple unimodal and multimodal functions) and Test Group B(the CEC2013 test suite). Experiments results show that LSCS demonstrates significant advantages in terms of convergence speed and optimization capability in solving complex problems.

  • LGCN: Learnable Gabor Convolution Network for Human Gender Recognition in the Wild Open Access

    Peng CHEN  Weijun LI  Linjun SUN  Xin NING  Lina YU  Liping ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/06/13
      Vol:
    E102-D No:10
      Page(s):
    2067-2071

    Human gender recognition in the wild is a challenging task due to complex face variations, such as poses, lighting, occlusions, etc. In this letter, learnable Gabor convolutional network (LGCN), a new neural network computing framework for gender recognition was proposed. In LGCN, a learnable Gabor filter (LGF) is introduced and combined with the convolutional neural network (CNN). Specifically, the proposed framework is constructed by replacing some first layer convolutional kernels of a standard CNN with LGFs. Here, LGFs learn intrinsic parameters by using standard back propagation method, so that the values of those parameters are no longer fixed by experience as traditional methods, but can be modified by self-learning automatically. In addition, the performance of LGCN in gender recognition is further improved by applying a proposed feature combination strategy. The experimental results demonstrate that, compared to the standard CNNs with identical network architecture, our approach achieves better performance on three challenging public datasets without introducing any sacrifice in parameter size.

  • RF-Drone: Multi-Tag System for RF-ID Enables Drone Tracking in GPS-Denied Environments

    Xiang LU  Ziyang CHEN  Lianpo WANG  Ruidong LI  Chao ZHAI  

     
    PAPER

      Pubricized:
    2019/04/26
      Vol:
    E102-B No:10
      Page(s):
    1941-1950

    In resent years, providing location services for mobile targets in a closed environment has been a growing interest. In order to provide good localization and tracking performance for drones in GPS-denied scenarios, this paper proposes a multi-tag radio frequency identification (RFID) system that is easy to equip and does not take up the limited resources of the drone which is not susceptible to processor performance and cost constraints compared with computer vision based approaches. The passive RFID tags, no battery equipped, have an ultra-high resolution of millimeter level. We attach multiple tags to the drone and form multiple sets of virtual antenna arrays during motion, avoiding arranging redundant antennas in applications, and calibrating the speed chain to improve tracking performance. After combining the strap-down inertial navigation system (SINS) carried by the drone, we have established a coupled integration model that can suppress the drift error of SINS with time. The experiment was designed in bi-dimensional and three-dimensional scenarios, and the integrated positioning system based on SINS/RFID was evaluated. Finally, we discussed the impact of some parameters, this innovative approach is verified in real scenarios.

  • Phase-Based Periocular Recognition with Texture Enhancement Open Access

    Luis Rafael MARVAL-PÉREZ  Koichi ITO  Takafumi AOKI  

     
    PAPER-Image

      Vol:
    E102-A No:10
      Page(s):
    1351-1363

    Access control and surveillance applications like walking-through security gates and immigration control points have a great demand for convenient and accurate biometric recognition in unconstrained scenarios with low user cooperation. The periocular region, which is a relatively new biometric trait, has been attracting much attention for recognition of an individual in such scenarios. This paper proposes a periocular recognition method that combines Phase-Based Correspondence Matching (PB-CM) with a texture enhancement technique. PB-CM has demonstrated high recognition performance in other biometric traits, e.g., face, palmprint and finger-knuckle-print. However, a major limitation for periocular region is that the performance of PB-CM degrades when the periocular skin has poor texture. We address this problem by applying texture enhancement and found out that variance normalization of texture significantly improves the performance of periocular recognition using PB-CM. Experimental evaluation using three public databases demonstrates the advantage of the proposed method compared with conventional methods.

  • High Efficiency Class-E and Compact Doherty Power Amplifiers with Novel Harmonics Termination for Handset Applications

    Tsuyoshi SUGIURA  Satoshi FURUTA  Tadamasa MURAKAMI  Koki TANJI  Norihisa OTANI  Toshihiko YOSHIMASU  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    699-706

    This paper presents high efficiency Class-E and compact Doherty power amplifiers (PAs) with novel harmonics termination for handset applications using a GaAs/InGaP heterojunction bipolar transistor (HBT) process. The novel harmonics termination circuit effectively reduces the insertion loss of the matching circuit, allowing a device with a compact size. The Doherty PA uses a lumped-element transformer which consists of metal-insulator-metal (MIM) capacitors on an IC substrate, a bonding-wire inductor and short micro-strip lines on a printed circuit board (PCB). The fabricated Class-E PA exhibits a power added efficiency (PAE) as high as 69.0% at 1.95GHz and as high as 67.6% at 2.535GHz. The fabricated Doherty PA exhibits an average output power of 25.5dBm and a PAE as high as 50.1% under a 10-MHz band width quadrature phase shift keying (QPSK) 6.16-dB peak-to-average-power-ratio (PAPR) LTE signal at 1.95GHz. The fabricated chip size is smaller than 1mm2. The input and output Doherty transformer areas are 0.5mm by 1.0mm and 0.7mm by 0.7mm, respectively.

  • Design of a Wideband Constant-on-Time Control Envelope Amplifier for Wireless Basestation Envelope Tracking Power Amplifiers

    Deng-Fong LU  Chin HSIA  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    707-716

    Envelope tracking (ET) technology provides the potential for achieving high efficiency in power amplifiers (PAs) with high peak-to-average ratio (PAR) signals. Envelope amplifiers with high fidelity, high efficiency, and wide bandwidth are critical components for the widespread application of envelope tracking. This paper presents the design of a linear-assisted switching buck converter for use in an envelope amplifier. To effectively leverage the high efficiency of buck converters and the wide bandwidth capabilities of linear amplifiers, a parallel combination of these two devices is employed in this work. A novel current-sense constant-on-time (COT) controller is proposed to coordinate this hybrid power supply. The combination mainly enables the switching converter to provide the average power required by the PA with high efficiency, while the wideband linear amplifier provides a wide range of dynamic voltages. The technique improves the efficiency of the envelope amplifier, especially for applications requiring high PAR with wider bandwidth signals. Measurement of the envelope amplifier showed an efficiency of approximately 77% with 10 W output power using LTE downlink signals. The overall ET system was demonstrated by using a GaN PA. The measured average power-added efficiency of the amplifier reached above 45% for an LTE modulated signal with 20 MHz bandwidth and PAR of 8.0 dB, at an average output power of 5 W and gain of 10.1 dB. The measured normalized RMS error is below 2.1% with adjacent channel leakage ratio of -48 dBc at an offset frequency of 20 MHz.

  • QoS-Constrained Robust Beamforming Design for MIMO Interference Channels with Bounded CSI Errors Open Access

    Conggai LI  Xuan GENG  Feng LIU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:10
      Page(s):
    1426-1430

    Constrained by quality-of-service (QoS), a robust transceiver design is proposed for multiple-input multiple-output (MIMO) interference channels with imperfect channel state information (CSI) under bounded error model. The QoS measurement is represented as the signal-to-interference-plus-noise ratio (SINR) for each user with single data stream. The problem is formulated as sum power minimization to reduce the total power consumption for energy efficiency. In a centralized manner, alternating optimization is performed at each node. For fixed transmitters, closed-form expression for the receive beamforming vectors is deduced. And for fixed receivers, the sum-power minimization problem is recast as a semi-definite program form with linear matrix inequalities constraints. Simulation results demonstrate the convergence and robustness of the proposed algorithm, which is important for practical applications in future wireless networks.

  • Phase Center Calibration for UWB Phase Interferometer Direction Finding by Virtual Baseline Open Access

    Jian BAI  Zhiqiang GE  Lu MA  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:10
      Page(s):
    1383-1386

    Phase interferometer using baseline composed by uniform linear array (ULA) with stable phase center for estimating the angle of arrival (AOA) is always employed in the direction finding (DF) system. However, the phase center of antenna element could vary with the incident angle, frequency, multipath and so on. To deal with these problems, a novel method is proposed in this paper to calibrate the phase center over ultra-wideband (UWB). Meanwhile, the restrictions of this method are discussed. Numerical simulations reveal that higher accuracy and larger unambiguous angle range can be obtained by the proposed method.

  • A Note on the Zero-Difference Balanced Functions with New Parameters

    Shanding XU  Xiwang CAO  Jian GAO  

     
    LETTER-Cryptography and Information Security

      Vol:
    E102-A No:10
      Page(s):
    1402-1405

    As a generalization of perfect nonlinear (PN) functions, zero-difference balanced (ZDB) functions play an important role in coding theory, cryptography and communications engineering. Inspired by a foregoing work of Liu et al. [1], we present a class of ZDB functions with new parameters based on the cyclotomy in finite fields. Employing these ZDB functions, we obtain simultaneously optimal constant composition codes and perfect difference systems of sets.

  • 120-W Ku-Band GaN SSPA with Diode Linearizer for Future Broadcasting Satellites Open Access

    Masafumi NAGASAKA  Masaaki KOJIMA  Takuma TORII  Hiromitsu UTSUMI  Koji YAMANAKA  Shintaro SHINJO  Mitsuhiro SHIMOZAWA  Hisashi SUJIKAI  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    717-724

    Satellite broadcasting of 4K/8K ultra-high definition television (UHDTV) was launched in Japan in December 2018. Because this system uses the amplitude and phase shift keying (APSK) modulation scheme, there is a need to improve the non-linear characteristics of the satellite transponders. To meet this requirement, we have been developing a 120-W-class Ku-band solid state power amplifier (SSPA) as a replacement for the currently used traveling wave tube amplifier (TWTA). In this study, we developed a gallium-nitride (GaN) SSPA and linearizer (LNZ). The SSPA achieved an output power of 120W while maintaining a power added efficiency (PAE) of 31%. We evaluated the transmission performance of 16APSK in this SSPA channel in comparison with that in the TWTA channel.

  • An Adaptive Bit Allocation for Maximum Bit-Rate Tomlinson-Harashima Precoding Open Access

    Shigenori KINJO  Shuichi OHNO  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:10
      Page(s):
    1438-1442

    An adaptive bit allocation scheme for zero-forcing (ZF) Tomlinson-Harashima precoding (THP) is proposed. The ZF-THP enables us to achieve feasible bit error rate (BER) performance when appropriate substream permutations are installed at the transmitter. In this study, the number of bits in each substream is adaptively allocated to minimize the average BER in fading environments. Numerical examples are provided to compare the proposed method with eigenbeam space division multiplexing (E-SDM) method.

  • Interference-Aware Dynamic Channel Allocation for Small-Cells in Heterogeneous Networks with FFR

    Ilhak BAN  Se-Jin KIM  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E102-A No:10
      Page(s):
    1443-1446

    This letter proposes a novel dynamic channel assignment (DCA) scheme to improve the downlink system capacity in heterogeneous networks (HetNets) with fractional frequency reuse (FFR). In the proposed DCA scheme, the macro base station (MBS) finds small-cell base stations (SBSs) that give strong interference to macro user equipments (MUEs) and then dynamically assigns subchannels to the SBSs to serve their small-cell user equipments (SUEs) according to the cross-tier interference information to MUEs. Through simulation results, it is shown that the proposed DCA scheme outperforms other schemes in terms of the total system capacity.

  • Multi-Autonomous Robot Enhanced Ad-Hoc Network under Uncertain and Vulnerable Environment Open Access

    Ming FENG  Lijun QIAN  Hao XU  

     
    INVITED PAPER

      Pubricized:
    2019/04/26
      Vol:
    E102-B No:10
      Page(s):
    1925-1932

    This paper studies the problem of real-time routing in a multi-autonomous robot enhanced network at uncertain and vulnerable tactical edge. Recent network protocols, such as opportunistic mobile network routing protocols, engaged social network in communication network that can increase the interoperability by using social mobility and opportunistic carry and forward routing algorithms. However, in practical harsh environment such as a battlefield, the uncertainty of social mobility and complexity of vulnerable environment due to unpredictable physical and cyber-attacks from enemy, would seriously affect the effectiveness and practicality of these emerging network protocols. This paper presents a GT-SaRE-MANET (Game Theoretic Situation-aware Robot Enhanced Mobile Ad-hoc Network) routing protocol that adopt the online reinforcement learning technique to supervise the mobility of multi-robots as well as handle the uncertainty and potential physical and cyber attack at tactical edge. Firstly, a set of game theoretic mission oriented metrics has been introduced to describe the interrelation among network quality, multi-robot mobility as well as potential attacking activities. Then, a distributed multi-agent game theoretic reinforcement learning algorithm has been developed. It will not only optimize GT-SaRE-MANET routing protocol and the mobility of multi-robots online, but also effectively avoid the physical and/or cyber-attacks from enemy by using the game theoretic mission oriented metrics. The effectiveness of proposed design has been demonstrated through computer aided simulations and hardware experiments.

  • On the Performance of Hybrid Satellite-Terrestrial Cooperative Networks with Different Combining Schemes

    Guoqiang CHENG  Qingquan HUANG  Zhi LIN  Xiangshuai TAO  Jian OUYANG  Guodong WU  

     
    PAPER

      Pubricized:
    2019/05/02
      Vol:
    E102-B No:10
      Page(s):
    2006-2013

    In this paper, we consider a hybrid satellite terrestrial cooperative network with a multi-antenna relay where the satellite links follows the shadowed-Rician fading and the terrestrial link undergoes the correlated Rayleigh fading. Specifically, two different channel state information (CSI) assumptions are considered: 1) full CSI at the relay; 2) full CSI of satellite-relay link and statistical CSI of relay-destination link at the relay. In addition, selection combining (SC) or maximal ratio combining (MRC) are used at the destination to combine the signals from direct link and relay link. By considering the above four cases, we derived the closed-form expressions for the outage probability (OP) respectively. Furthermore, the asymptotic OP expressions at high signal-to-noise (SNR) are developed to reveal the diversity orders and the array gains of the considered network. Finally, numerical results are provided to validate our analytical expressions as well as the system performance for different cases.

  • Underdetermined Direction of Arrival Estimation Based on Signal Sparsity

    Peng LI  Zhongyuan ZHOU  Mingjie SHENG  Peng HU  Qi ZHOU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/04/12
      Vol:
    E102-B No:10
      Page(s):
    2066-2072

    An underdetermined direction of arrival estimation method based on signal sparsity is proposed when independent and coherent signals coexist. Firstly, the estimate of the mixing matrix of the impinging signals is obtained by clustering the single source points which are detected by the ratio of time-frequency transforms of the received signals. Then, each column vector of the mixing matrix is processed by exploiting the forward and backward vectors in turn to obtain the directions of arrival of all signals. The number of independent signals and coherent signal groups that can be estimated by the proposed method can be greater than the number of sensors. The validity of the method is demonstrated by simulations.

  • Scalable Community Identification with Manifold Learning on Speaker I-Vector Space

    Hongcui WANG  Shanshan LIU  Di JIN  Lantian LI  Jianwu DANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/07/10
      Vol:
    E102-D No:10
      Page(s):
    2004-2012

    Recognizing the different segments of speech belonging to the same speaker is an important speech analysis task in various applications. Recent works have shown that there was an underlying manifold on which speaker utterances live in the model-parameter space. However, most speaker clustering methods work on the Euclidean space, and hence often fail to discover the intrinsic geometrical structure of the data space and fail to use such kind of features. For this problem, we consider to convert the speaker i-vector representation of utterances in the Euclidean space into a network structure constructed based on the local (k) nearest neighbor relationship of these signals. We then propose an efficient community detection model on the speaker content network for clustering signals. The new model is based on the probabilistic community memberships, and is further refined with the idea that: if two connected nodes have a high similarity, their community membership distributions in the model should be made close. This refinement enhances the local invariance assumption, and thus better respects the structure of the underlying manifold than the existing community detection methods. Some experiments are conducted on graphs built from two Chinese speech databases and a NIST 2008 Speaker Recognition Evaluations (SREs). The results provided the insight into the structure of the speakers present in the data and also confirmed the effectiveness of the proposed new method. Our new method yields better performance compared to with the other state-of-the-art clustering algorithms. Metrics for constructing speaker content graph is also discussed.

  • A Diversity Metric Based Study on the Correlation between Diversity and Security

    Qing TONG  Yunfei GUO  Hongchao HU  Wenyan LIU  Guozhen CHENG  Ling-shu LI  

     
    PAPER-Dependable Computing

      Pubricized:
    2019/07/16
      Vol:
    E102-D No:10
      Page(s):
    1993-2003

    Software diversity can be utilized in cyberspace security to defend against the zero-day attacks. Existing researches have proved the effectiveness of diversity in bringing security benefits, but few of them touch the problem that whether there is a positive correlation between the security and the diversity. In addition, there is little guidance on how to construct an effective diversified system. For that, this paper develops two diversity metrics based on system attribute matrix, proposes a diversity measurement and verifies the effectiveness of the measurement. Through several simulations on the diversified systems which use voting strategy, the relationship between diversity and security is analyzed. The results show that there is an overall positive correlation between security and diversity. Though some cases are against the correlation, further analysis is made to explain the phenomenon. In addition, the effect of voting strategy is also discussed through simulations. The results show that the voting strategy have a dominant impact on the security, which implies that security benefits can be obtained only with proper strategies. According to the conclusions, some guidance is provided in constructing a more diversified as well as securer system.

  • Low-Cost Method for Recognizing Table Tennis Activity

    Se-Min LIM  Jooyoung PARK  Hyeong-Cheol OH  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/06/18
      Vol:
    E102-D No:10
      Page(s):
    2051-2054

    This study designs a low-cost portable device that functions as a coaching assistant system which can support table tennis practice. Although deep learning technology is a promising solution to realizing human activity recognition, we propose using cosine similarity in making inferences. Our experiments show that the cosine similarity based inference can be a good alternative to the deep learning based inference for the assistant system when resources are limited.

  • Polarization Filtering Based Transmission Scheme for Wireless Communications

    Zhangkai LUO  Zhongmin PEI  Bo ZOU  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:10
      Page(s):
    1387-1392

    In this letter, a polarization filtering based transmission (PFBT) scheme is proposed to enhance the spectrum efficiency in wireless communications. In such scheme, the information is divided into several parts and each is conveyed by a polarized signal with a unique polarization state (PS). Then, the polarized signals are added up and transmitted by the dual-polarized antenna. At the receiver side, the oblique projection polarization filters (OPPFs) are adopted to separate each polarized signal. Thus, they can be demodulated separately. We mainly focus on the construction methods of the OPPF matrix when the number of the separate parts is 2 and 3 and evaluate the performance in terms of the capacity and the bit error rate. In addition, we also discuss the probability of the signal separation when the number of the separate parts is equal or greater than 4. Theoretical results and simulation results demonstrate the performance of the proposed scheme.

1981-2000hit(21534hit)