The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

29821-29840hit(30728hit)

  • Magnetic Field Dependence of Critical Current Density in Superconducting Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O Films

    Yukio OSAKA  Hideki TAMURA  

     
    PAPER

      Vol:
    E76-C No:8
      Page(s):
    1298-1302

    Nojima and Fujita have found a universal relation, irrespective of temperatures T, between the reduced field hH/Hir(T) and the reduced quantity of magnetization hysteresis mΔM (T, H)/ΔM (T, H0), where Hir is the irreversibility field and ΔM(T, H) is the hysteresis of magnetization for YBa2Cu3Ox and Bi2Sr2CaCu2Ox films. We could explain this universal relation based on a scaling theory in a three-dimensional superconducting vortex-glass phase. The exponent ν derived by this relation coincides with that obtained by nonlinear I-V characteristics for YBa2Cu3Ox films.

  • Multihopping and Decoding of Error-Correcting Code for MFSK/FH-SSMA Systems

    Tetsuo MABUCHI  Ryuji KOHNO  Hideki IMAI  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    874-885

    This paper investigates a multihopping scheme for MFSK (Multilevel Frequency Shift Keying) /FH-SSMA (Frequency Hopping-Spread Spectrum Multiple Access) system. Moreover, we propose and investigate a modified decoding scheme for the coded MFSK/FH-SSMA system. In this multi-hopped MFSK/FH-SSMA system, several hopping frequencies per chip are assigned and transmitted in parallel in order to improve its frequency diversity capability for a fading channel. We theoretically analyze the performance of the multihopped MFSK/FH-SSMA system in a Rayleigh fading channel. Moreover, in the coded MFSK/FH-SSMA system, we propose a modified scheme of the error and erasure decoding of an error-correcting code. The modified decoding scheme utilizes the information of rows having the largest number of entries in the decoded time-frequency matrix. Their BER (Bit Error Rate) performance is evaluated by theoretical analysis in order to show the improvement in user capacity.

  • Direct Sequence Spread Spectrum over Measured Indoor Radio Channels

    Mitchell CHASE  Kaveh PAHLAVAN  

     
    INVITED PAPER

      Vol:
    E76-B No:8
      Page(s):
    835-841

    Indoor radio communications is an important component of the emerging personal communication systems service. It is also the basis for wireless local area networks. The indoor radio channel is characterized by fading multipaths as well as noise. Direct sequence spread spectrum (DSSS), with its inherent resistance to multipath interference is an attractive technique for this environment. To allow multiple users within the limited bandwidths available, code division multiple access is needed. This paper analyzes the performance of a DSSS scheme employing random orthogonal codes over fading multipath indoor radio channels using actual channel measurements from five different locations. A RAKE receiver is used to study the effects of power control, code length and receiver structure. The average probability of error as a function of signal-to-noise ratio or as a function of the number of simultaneous transmitters is used as the performance criteria.

  • Calibration of Linear CCD Cameras Used in the Detection of the Position of the Light Spot

    Toyohiko HAYASHI  Rika KUSUMI  Michio MIYAKAWA  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E76-D No:8
      Page(s):
    912-918

    This paper presents a technique by which any linear CCD camera, be it one with lens distortions, or even one with misaligned lens and CCD, may be calibrated to obtain optimum performance characteristics. The camera-image formation model is described as a polynomial expression, which provides the line-of-sight flat-beam, including the target light-spot. The coefficients of the expression, which are referred to as camera parameters, can be estimated using the linear least-squares technique, in order to minimize the discrepancy between the reference points and the model-driven flat-beam. This technique requires, however, that a rough estimate of camera orientation, as well as a number of reference points, are provided. Experiments employing both computer simulations and actual CCD equipment certified that the model proposed can accurately describe the system, and that the parameter estimation is robust against noise.

  • Approximate Odd Periodic Correlation Distributions of Binary Sequences

    Shinya MATSUFUJI  Kyoki IMAMURA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    842-847

    An approximate equation of the odd periodic correlation distribution for the family of binary sequences is derived from the exact even periodic correlation distribution. The distribution means the probabilities of correlation values which appear among all the phase-shifted sequences in the family. It is shown that the approximate distribution is almost the same as the computational result of some family such as the Gold sequences with low even periodic correlation magnitudes, or the Kasami sequences, the bent sequences with optimal even periodic correlation properties in the sense of the Welch's lower bound. It is also shown that the odd periodic correlation distribution of the family with optimal periodic correlation properties is not the Gaussian distribution, but that of the family of the Gold sequences with short period seems to be similar to the Gaussian distribution.

  • Possibility of Phonon-Assistance on Electronic Transport and the Cooper Pairing in Oxide Superconductors

    Ryozo AOKI  Hironaru MURAKAMI  Tetsuro NAKAMURA  

     
    PAPER

      Vol:
    E76-C No:8
      Page(s):
    1310-1318

    The Cooper pairing interaction in high Tc oxide superconductor is discussed in terms of an empirical expression; TcDexp[1/g], gcωo which was derived in our previous investigation. The dual character of this expression consisting of the phonon Debye temperature D and electronic excitation ωo in the mid-infrared region can be interpreted on the basis of the phonon-assisted mechanism on carrier conduction and the electronic excitation. A tunneling spectrum here presented shows certain evidence of the phonon contribution. The characteristics of the long range superconductive proximity phenomena recently reported are also may be interpreted by this mechanism.

  • A Real-Time Scheduler Using Neural Networks for Scheduling Independent and Nonpreemptable Tasks with Deadlines and Resource Requirements

    Ruck THAWONMAS  Norio SHIRATORI  Shoichi NOGUCHI  

     
    PAPER-Bio-Cybernetics

      Vol:
    E76-D No:8
      Page(s):
    947-955

    This paper describes a neural network scheduler for scheduling independent and nonpreemptable tasks with deadlines and resource requirements in critical real-time applications, in which a schedule is to be obtained within a short time span. The proposed neural network scheduler is an integrate model of two Hopfield-Tank neural network medels. To cope with deadlines, a heuristic policy which is modified from the earliest deadling policy is embodied into the proposed model. Computer simulations show that the proposed neural network scheduler has a promising performance, with regard to the probability of generating a feasible schedule, compared with a scheduler that executes a conventional algorithm performing the earliest deadline policy.

  • Breast Tumor Classification by Neural Networks Fed with Sequential-Dependence Factors to the Input Layer

    Du-Yih TSAI  Hiroshi FUJITA  Katsuhei HORITA  Tokiko ENDO  Choichiro KIDO  Sadayuki SAKUMA  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E76-D No:8
      Page(s):
    956-962

    We applied an artificial neural network approach identify possible tumors into benign and malignant ones in mammograms. A sequential-dependence technique, which calculates the degree of redundancy or patterning in a sequence, was employed to extract image features from mammographic images. The extracted vectors were then used as input to the network. Our preliminary results show that the neural network can correctly classify benign and malignant tumors at an average rate of 85%. This accuracy rate indicates that the neural network approach with the proposed feature-extraction technique has potential utility in the computer-aided diagnosis of breast cancer.

  • A New Photometric Method Using 3 Point Light Sources

    Changsuk CHO  Haruyuki MINAMITANI  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E76-D No:8
      Page(s):
    898-904

    This paper presents a new idea of photometric stereo method which uses 3 point light sources as illumination source. Its intention is to extract the 3-D information of gastric surface. The merit of this method is that it is applicable to the textured and/or specular surfaces, moreover whose environment is too narrow, like gastric surface. The verification of the proposed method was achieved by the theoretical proof and experiment.

  • Capacity Analysis of a Cellular Direct Sequence Code Division Multiple Access System with Imperfect Power Control

    Ramjee PRASAD  Michel G. JANSEN  Adriaan KEGEL  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    894-905

    The capacity of a cellular direct sequence code division multiple access system is investigated in situations with and without power control for both the reverse link (from mobile to base station) and the forward link (from base station to mobile). The capacity is defined as the number of simultaneous users per cell with a prespecified performance. A theoretical analysis of the effect of imperfect power control on the reverse link capacity is presented using an analytical model. To investigate the reverse link capacity without any form of power control, a general spatial user distribution is developed which is very suitable for analytical study of any multiple access system with the near-far effect problem. The performance of the reverse link of a CDMA system is also evaluated considering the users located in surrounding cells. Finally, the forward link capacity is studied considering multiple cells. Two possible forward power control schemes, namely carrier-to-interference ratio driven and distance driven systems, are discussed.

  • Pseudonoise Sequences by Chaotic Nonlinear Maps and Their Correlation Properties

    Tohru KOHDA  Akio TSUNEDA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    855-862

    A simple method is given for obtaining new families of pseudonoise (PN) sequences based on chaotic non-linear maps. Such families are worse than the Gold and the Kasami families in terms of maximum correlation values. Nevertheless, such a method has several advantages: the generation is easy, and various families with an arbitrary family size and sequence period can be obtained primarily because non-linear maps have several parameters to be secret keys for communications security. Hence these sequences are good candidates of spreading sequences for CDMA.

  • Consideration of the Effectiveness of the Quasi-TEM Approximation on Microstrip Lines with Optically Induced Plasma Layer

    Yasushi HORII  Toshimitsu MATSUYOSHI  Takeshi NAKAGAWA  Sadao KURAZONO  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1158-1160

    In this letter, the effectiveness of the quasi-TEM approximation is studied for the microstrip line including optically induced semiconductor plasma region. This approximation is considered to be efficient under several restrictions such as the upper limit of the microwave frequency and the plasma density.

  • A Simplified Realization of Adaptive Notch Filter and Its Convergence Properties

    Shotaro NISHIMURA  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1147-1149

    In this letter, a new structure of adaptive IIR notch filter is presented. The structure is based on direct form realization and uses the similar adaptation algorithm given in Ref. (4). A quantitative analysis for convergence properties is developed. It is shown that the proposed structure shows superior performance comparing with previously proposed designs. The results of computer simulations are presented to substantiate the analysis.

  • Future Prospects of MOS Devices for LSI

    Takuo SUGANO  

     
    INVITED PAPER

      Vol:
    E76-C No:7
      Page(s):
    1029-1033

    Scaling-down of MOSFETs (metal-oxide-semiconductor field effect transistors can be divided to semi-classical and quantum mechanical one. In the regime of semi-classical scaling-down the behavior of electrons and holes can be well described with the effective mass approximation and in the regime of quantum mechanical scaling-down the characteristics of electrons and holes as wave becomes markedly. The minimum size limit of MOSFETs scaled down in semi-classical regime is mainly determined by the subthreshold characteristics and the short channel effect on the threshold voltage and 0.1 µm will be the minimum channel length from practical viewpoints. Scaling down of MOSFETs enhances their operational speed, but the substrates with high resistivity which are often used in SOI (silicon on insulator) substrates result longer dielectric relaxation time. While the dielectric relaxation time becomes longer than the reciprocal of signal frequency, the semiconductors work as lossy dielectrics and may lead to new types of dynamic circuits. Modification of material properties utilizing the wave nature of electrons is an illustration of quantum mechanical way to improve characteristics of MOSFETs. Suppression of optical phonon scattering of two dimensional electrons by introducing two dimensional array of quantum dots into substrates is expected to improve high field characteristics of material. Brillouin zone folding is another way to control the band structure of materials, especially to make the indirect transition band structure to the direct transition band structure. Heat transfer from a chip severely limits the number of devices which can be integrated on the chip. Reduction of signal charge to electronic elementary charge, that is quantum limit, is expected to be useful for realization of nano-power electronics.

  • Three Dimensional Optical Interconnection Technology for Massively-Parallel Computing Systems

    Kazuo KYUMA  Shuichi TAI  

     
    INVITED PAPER

      Vol:
    E76-C No:7
      Page(s):
    1070-1079

    Three dimensional (3-D) optics offers potential advantages to the massively-parallel systems over electronics from the view point of information transfer. The purpose of this paper is to survey some aspects of the 3-D optical interconnection technology for the future massively-parallel computing systems. At first, the state-of-art of the current optoelectronic array devices to build the interconnection networks are described, with emphasis on those based on the semiconductor technology. Next, the principles, basic architectures, several examples of the 3-D optical interconnection systems in neural networks and multiprocessor systems are described. Finally, the issues that are needed to be solved for putting such technology into practical use are summarized.

  • The Sensitivity of Finger due to Elecrtical Stimulus Pulse for a Tactile Vision Substitution System

    Seungjik LEE  Jaeho SHIN  Seiichi NOGUCHI  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1204-1206

    In this letter, we study on the sensitivity to the electrical stimulus pulse for biomedical electronics for the purpose to make a tactile vision substitution system for binds. We derive the equivalent circuit of finger by measuring sensitive voltages with various touch condition and various DC voltage. And we consider to the sensitivity of finger against electrical stimulus pulse. In order to convert the sense of sight to tactile sense, we consider four types of touch condition and various types of pulse. It is shown that the sensitivity of finger to electrical stimulus pulse is determined by duty-ratio, frequency, hight of pulse and the type of touch condition. In the case that duty-ratio is about 20%, frequency is within about 60-300Hz and touch condition is A-4 type, the sensitive voltage becomes the lowest. With this result, a tactile vision substitution system can be developed and the system will be used to transfer various infomations to blinds without paper.

  • On a Numerical Solution for the Near-Field of Microstrip Antennas

    Yasufumi SASAKI  Masanobu KOMINAMI  Shinnosuke SAWA  

     
    LETTER

      Vol:
    E76-B No:7
      Page(s):
    759-761

    Numerical solutions for the near-field of microstrip antennas are presented. The field distribution is calculated by taking the inverse Fourier transform involving the current distribution with the help of the spectral-domain moment method. A new technique to save the computation time is devised, and the field pattern of the circularly polarized antenna is illustrated.

  • Amplitude Statistics of Sea Clutter Using an X-Band Radar

    Yoshihiro ISHIKAWA  Matsuo SEKINE  Manami IDE  Mami UENO  Shogo HAYASHI  

     
    PAPER-Electronic and Radio Applications

      Vol:
    E76-B No:7
      Page(s):
    784-788

    Sea clutter was measured using an X-band radar at very high grazing angles between 8.2 and 17.5. The sea state was 7 with the wave height of 6 to 9m. The wind velocity was 25m/s. It is shown that sea clutter amplitudes obey the log-normal and K distributions using the Akaike Information Criterion (AIC) , which is more rigorous fit to the distribution to the data than the least squares method.

  • Pitch Synchronous Innovation CELP (PSI-CELP)

    Takehiro MORIYA  Satoshi MIKI  Kazunori MANO  Hitoshi OHMURO  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1177-1180

    A speech coding scheme at 3.6 kbit/s has been proposed. The scheme is based on CELP (Code Excited Linear Prediction) with pitch synchronous innovation, which means even random codevectors as well as adaptive codevectors have pitch periodicity. The quality is comparable to 6.7 kbit/s VSELP coder for the Japanese cellular radio standard.

  • A Bit-Parallel Block-Parallel Functional Memory Type Parallel Processor Architecture

    Kazutoshi KOBAYASHI  Keikichi TAMARU  Hiroto YASUURA  Hidetoshi ONODERA  

     
    PAPER-Memory-Based Parallel Processor Architectures

      Vol:
    E76-C No:7
      Page(s):
    1151-1158

    We propose a new architecture of Functional Memory type Parallel Processor (FMPP) architectures called bit-parallel block-parallel (BPBP) FMPP. Design details of a prototype BPBP FMPP chip are also shown. FMPP is a massively parallel processor architecture that has a memory-based simple two-dimensional regular array structure suitable for memory VLSI technology. Computation space increases as integration density of memory increases. Computation time does not depend on the number of processors. So far, a bit-serial word-parallel (BSWP) implementation based on a content addressable memory (CAM) is mainly investigated as one of promising architectures of FMPP. In a BSWP FMPP, each word of a CAM works as a processor, and the amount of hardware is minimized by abopting a bit-serial operation, thus maximizing integration scale. The BSWP FMPP, however, does not allow operations between two words, which restriction limits the applicability of the BSWP FMPP. On the other hand, the proposed BPBP FMPP is designed to execute logical and arithmetic operations on two words. These operations are performed simultaneously on every group of words called a block. BPBP FMPP hereby achieves a high performance while maintaining high integration density of the BSWP, and is suitable for various applications.

29821-29840hit(30728hit)