The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

29701-29720hit(30728hit)

  • Hierarchical Analysis System for VLSI Power Supply Network

    Takeshi YOSHITOME  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1659-1665

    Since, in a VLSI circuit, the number of transistors and the clock frequency are constantly increasing, it is important to analyze the voltage drop and current density on a full chip's power networks. We propose a new hierarchical power analysis system named XPOWER. A new reduction algorithm for the resistance and current source network is used in this system. The algorithm utilizes the design hierarchy in nature and is independent of network topology. Networks at each level are reduced into small and equivalent networks, and this reduction is performed recursively from the bottom levels of the design hierarchy. At each step of the reduction, the network under consideration consists of two kinds of objects: (1) reduced child networks, and (2) the interconnection between child networks. After all networks have been reduced, circuit equationa are solved recursively from the top. This allows to decrease the size of the matrix to be solved and to reduce the execution time. Experimental results show that the factor of reduction in matrix size is from 1/10 to 1/40 and execution is six times faster than with flat analysis. The power networks of a 16 bit digital signal processor was analyzed within 15 minutes using XPOWER.

  • An ASIP Instruction Set Optimization Algorithm with Functional Module Sharing Constraint

    Alauddin Y. ALOMARY  Masaharu IMAI  Nobuyuki HIKICHI  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1713-1720

    One of the most interesting and most analyzed aspects of the CPU design is the instruction set design. How many and which operations to be provided by hardware is one of the most fundamental issues relaing to the instruction set design. This paper describes a novel method that formulates the instruction set design of ASIP (an Application Specific Integrated Processor) using a combinatorial appoach. Starting with the whole set of all possible candidata instructions that represesnt a given application domain, this approach selects a subset that maximizes the performance under the constraints of chip area, power consumption, and functional module sharing relation among operations. This leads to the efficient implementation of the selected instructions. A branch-and-bound algorithm is used to solve this combinatorial optimization problem. This approach selects the most important instructions for a given application as well as optimizing the hardware resources that implement the selected instructions. This approach also enables designers to predict the perfomance of their design before implementing them, which is a quite important feature for producing a quality design in reasonable time.

  • A Highly Accurate Laser-Sectioning Method for In-Motion Railway Inspection

    Yasuharu JIN  Yuichiro GOTO  Yoshiro NISHIMOTO  Hiroyuki NAITO  Akio IWAKE  

     
    PAPER

      Vol:
    E76-D No:10
      Page(s):
    1181-1189

    As in other fields, the automatization of railway maintenance work is a firm requirement. The authors have developed a system detecting obstacles around a railway for practical railway inspection. The system is based on an original laser-sectioning method and characterized by high accuracy with wide view and in-motion operation. It was confirmed that a static calibration was performed at an accuracy of within 5 mm. Furthermore, a theoretical estimation predicted that dynamic errors can be eliminated within a resolution of 4 mm by means of rail movement detection. In field tests on the Chuo Line, facilities were successfully inspected at speeds up to 40km/h.

  • Adaptive Image Sharpening Method Using Edge Sharpness

    Akira INOUE  Johji TAJIMA  

     
    PAPER

      Vol:
    E76-D No:10
      Page(s):
    1174-1180

    This paper proposes a new method for automatic improvement in image quality through adjusting the image sharpness. This method does not need prior knowledge about image blur. To improve image quality, the sharpness must be adjusted to an optimal value. This paper shows a new method to evaluate sharpness without MTF. It is considered that the human visual system judges image sharpness mainly based upon edge area features. Therefore, attention is paid to the high spatial frequency components in the edge area. The value is defined by the average intensity of the high spatial fequency components in the edge area. This is called the image edge sharpness" value. Using several images, edge sharpness values are compared with experimental results for subjective sharpness. According to the experiments, the calculated edge sharpness values show a good linear relation with subjective sharpness. Subjective image sharpness does not have a monotonic relation with subjective image quality. If the edge sharpness value is in a particular range, the image quality is judged to be good. According to the subjective experiments, an optimal edge sharpness value for image quality was obtained. This paper also shows an algorithm to alter an image into one which has another edge sharpness value. By altering the image, which achieves optimal edge sharpness using this algorithm, image sharpness can be optimally adjusted automatically. This new image improving method was applied to several images obtained by scanning photographs. The experimental results were quite good.

  • Broadband Fibre Loop Reflectors

    Katsumi MORISHITA  Yoshitaka KOSHIBA  Masamichi S. YATAKI  

     
    PAPER-Optical Device

      Vol:
    E76-C No:10
      Page(s):
    1487-1490

    A wavelength-insensitive reflector is demonstrated with a fibre loop which has an asymmetry in the constituent coupler. The reflector is made by thinning one of two identical fibres. The reflected power is more than 0.6 dB (87%) over the wavelength region of 1.2-1.35 µm and 1.42-1.65 µm. The transmitted power is less than 30 dB in the 1.23-1.63 µm region and less than 40 dB at 1.3 and 1.55 µm.

  • A Note on One-Way Multicounter Machines and Cooperating Systems of One-Way Finite Automata

    Yue WANG  Katsushi INOUE  Itsuo TAKANAMI  

     
    LETTER-Automaton, Language and Theory of Computing

      Vol:
    E76-D No:10
      Page(s):
    1302-1306

    For each two positive integers r, s, let [1DCM(r)-Time(ns)] ([1NCM(r)-Time(ns)]) and [1DCM(r)-Space(ns)] ([1NCM(r)-Space(ns)]) be the classes of languages accepted in time ns and in space ns, respectively, by one-way deterministic (nondeterministic) r-counter machines. We show that for each X{D, N}, [1XCM(r)-Time(ns)][1XCM(r+1)-Time(ns)] and [1XCM(r)-Space(ns)][1XCM(r+1)-Space(ns)]. We also investigate the relationships between one-way multicounter machines and cooperating systems of one-way finite automata. In particular, it is shown that one-way (one-) counter machines and cooperating systems of two one-way finite automata are equivalent in accepting power.

  • Analysis of Characteristics of a Cherenkov Laser for an Electromagnetic Wave with Continuous Frequency Spectrum

    Katsuhiko HORINOUCHI  Masahiro SATA  Toshiyuki SHIOZAWA  

     
    PAPER-Transient Field

      Vol:
    E76-C No:10
      Page(s):
    1481-1486

    The characteristics of an open-boundary Cherenkov laser for an electromagnetic wave with a continuous frequency spectrum are numerically analyzed. A given power spectral density for the input wave is found to get concentrated around the frequency where the spatial growth rate is maximum, as it grows along the electron beam. In addition, the frequency for the maximum growth rate is found to shift gradually to higher values. Furthermore, by gradually increasing the permittivity of the dielectric waveguide along it, we can always get the maximum power spectral density at the frequency where the spatial growth rate initially becomes maximum at the input.

  • Solder Joint Inspection Using Air Stimulation Speckle Vibration Detection Method and Fluorescence Detection Method

    Takashi HIROI  Kazushi YOSHIMURA  Takanori NINOMIYA  Toshimitsu HAMADA  Yasuo NAKAGAWA  Shigeki MIO  Kouichi KARASAKI  Hideaki SASAKI  

     
    PAPER

      Vol:
    E76-D No:10
      Page(s):
    1144-1152

    The fast and highly reliable method reported here uses two techniques to detect all types of defects, such as unsoldered leads, solder bridges, and misalignes leads in the minute solder joints of high density mounted devices. One technique uses external force applied by an air jet that vibrates or shifts unsoldered leads. The vibration and shift is detected as a change in the speckle pattern produced by laser illumination of the solder joints. The other technique uses fluorescence generated by short-wavelength laser illumination. The fluorescence from a printed circuit board produces a silhouette of the solder joint and this image is processed to detect defects. Experimental results show that this inspection method detects all kinds of defects accurately and with a very low false alarm rate.

  • Wavelength Demultiplexer Utilizing Stratified Waveguides with a Tapered Buffer Layer

    Kiyoshi KISHIOKA  Heihachiro OCHIAI  

     
    PAPER-Optical Device

      Vol:
    E76-C No:10
      Page(s):
    1491-1497

    In this paper, a novel Y-junction type demultiplexer utilizing a stratified-waveguide configuration in the branching region is proposed for the purpose of improving the extinction ratio. A high extinction ratio of about 20 dB is achieved at 0.6328 µm and 0.83 µm operation wavelengths both for the TE and TM modes. The properties of the new type branchig waveguides which consist of the diffused waveguide and the striploaded waveguide are described to explain the operation principle. Simulation results by the BPM are also shown to check the designed values of the waveguide parameters.

  • Synthetic Aperture Radar Data Processing Using Nonstandard FFT Algorithm: JERS-1, a Case Study

    Riccardo LANARI  Haruto HIROSAWA  

     
    PAPER-Radar Signal Processing

      Vol:
    E76-B No:10
      Page(s):
    1271-1278

    A fully focused Synthetic Aperture Radar (SAR) image can be obtained only if the raw data processing procedure takes into account the space-variance of the SAR system transfer function. This paper presents a nonconventional Fast Fourier Transform (FFT) algorithm which allows an efficient compensation of the space-variant effect. It is specially designed for the SAR data of the Japanese Earth Resources Satellite (JERS-1) but can be extended to different cases.

  • Resonance Absorptions in a Metal Grating with a Dielectric Overcoating

    Toyonori MATSUDA  Yoichi OKUNO  

     
    LETTER-Scattering and Diffraction

      Vol:
    E76-C No:10
      Page(s):
    1505-1509

    Field distributions and energy flows of the surface waves excited in singlelayer-overcoated gratings are evaluated in order to investigate the behavior of the resonance absorption in the grating.

  • Resolution Enhancement of Pulse Radar by Inversion Method

    Xuefeng WU  Ikuo ARAI  Kiyoshi KUSAMA  Tsutomu SUZUKI  

     
    PAPER-Radar Signal Processing

      Vol:
    E76-B No:10
      Page(s):
    1279-1284

    The size and weight of marine pulse radar systems must be limited in order to mount them on board boats. However, the azimuthal resolution of a marine radar with a small antenna is degraded by the antenna beam width. It is desirable to use signal processing techniques to increase both the azimuthal resolution and the range resolution of such systems without changing their external configuration. This paper introduces a resolution enhancement method based on deconvolution, which is a kind of inversion. The frequency domain deconvolution method is described first. The effectiveness of the proposed method is shown by simulation. Then, an example of resolution enhancement processing is applied to a pulse radar. The results of practical experiments show that this method is a promising way of upgrading radars by simply processing the received signals.

  • COACH:A Computer Aided Design Tool for Computer Architects

    Hiroki AKABOSHI  Hiroto YASUURA  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1760-1769

    A modern architect can not design high performance computer architecture without thinking all factors of performance from hardware level (logic/layout design) to system level (application programs, operating systems, and compilers). For computer architecture design, there are few practical CAD tools, which support design activities of the architect. In this paper, we propose a CAD tool, called COACH, for computer architecture design. COACH supports architecture design from hardware level to system level. To make a high-performance general purpose computer system, the architect evaluates system performance as well as hardware level performance. To evaluate hardware level performance accurately, logic/layout synthesis tools and simulator are used for evaluation. Logic/layout synthesis tools translate the architecture design into logic circuits and layout pattern and simulator is used to get accurate information on hardware level performance which consists of clock frequency, the number of transistors, power consumption, and so on. To evaluate system level performance, a compiler generator is introducd. The compiler generator generates a compiler of a programming language from the desripition of architecture design. The designed architecture is simulated in the behavior level with programs compiled by the compiler, and the architect can get information on system level performance which consists of program execution steps, etc. From both hardware level performance and system level performance, the architect can evaluate and revise his/her architecture, considering the architecture from hardware level to system level. In this paper, we propose a new design methodology which uses () logic/layout synthesis tools and simulators as tools for architecture design and () a compiler generator for system level evaluation. COACH, a CAD system based on the methodology, is discussed and a prototype of COACH is implemented. Using the design methodology, two processors are designed. The result of the designs shows that the proposed design methodology are effective in architecture design.

  • Reconfigurable Machine and its Application to Logic Simulation

    Nasahiro TOMITA  Naoaki SUGANUMA  Kotaro HIRANO  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1705-1712

    This paper presents a Reconfigurable Machine (RM). capable of efficiently implementing a wide range of computationlly complex algorithms. Its highly flexble architecture combining FPGA's with RAM's supports a wide range of applications. Since its "gate-level programmability" allows us to implement various kinds of parallel processing techniques, RM provides a perfomance comparable to exising "special-purpose" engines. The in-circuit reconfiguration capability of FPGA's is used to reload several kinds of configuration data during power on. Thus, RM behaves itself like a general-purpose computer applicable to various kinds of applications by loading programs. A Reconfigurable Machine-(RM-) has been built as the first prototype incorporating five FPGA's and four SRAM memory banks. RM- has been applied to a multiple-delay Logic Simulator (LSIM). Employing pipeline architecture, LSIM has achieved a perfomance of l million gate events per second at 4MHz. The concept of RM is the best solution to the trade-offs between general-purpose machines and special-purpose ones. RM will be a hardware platform accelerating a wide range of applications, also offering an interesting problem in high-level synthesis.

  • Statistical Property and Signal Processing of Received Wave of Subsurface Radar

    Kihachiro TAKETOMI  Yasumitsu MIYAZAKI  

     
    PAPER-Subsurface Radar

      Vol:
    E76-B No:10
      Page(s):
    1285-1289

    This paper proposes that the statistical property of the wave form obtained by a pulse type subsurface radar follows the Weibull probability density distribution. The shape parameter of this distribution is related to the underground condition. By using the shape parameter, we calculated the statistical variance. The ratio of the variance of target area to that of non-target area in invisible medium is evaluated for the effect of the radar signal processing. Over 20dB improvement, for example, can be obtained by means of Log/CFAR processing. It made clear that the cell size of processing should be selected the length corresponding to self-correlation.

  • Inverse Scattering Analysis Based on the Equivalent Source Method for Perfectly Conducting Cylinders Using Scattered Data of Several Frequencies

    Mario G. FROMOW RANGEL  Akira NOGUCHI  

     
    PAPER-Inverse Problem

      Vol:
    E76-C No:10
      Page(s):
    1456-1460

    The inverse problem we consider in this paper seeks, based on the equivalent source method, to determine the shape of perfectly conducting cylinders from the scattered farfield data obtained by using several incident waves. When incident waves of different frequencies are used, the shape of the scatterer can be reconstructed by employing only a few number of observation points. In the reconstruction problem, to determine the shape of the scatterer, the conjugate gradients method is applied. The general approach is applicable to cylindrical scatterers of arbitrary shape. Results of numerical simulations are presented to support the suggested approach.

  • Suppression of Weibull Radar Clutter

    David FERNANDES  Matsuo SEKINE  

     
    INVITED PAPER

      Vol:
    E76-B No:10
      Page(s):
    1231-1235

    Weibull-distributed clutter are reviewed. Most of the clutter received by L, S, C, X and Ku band radars obey Weibull distribution. Clutter suppression techniques for Weibull clutter are also reviewed. Especially, the generalized Weibull CFAR detector is emphasized. The approch is to estimate the shape and scale parameters of the Weibull clutter using order statistics and then use them in the detector. The generalized CFAR detector transforms the Weibull clutter distribution into a normalized exponential distribution. When a target is present, the transformation produces a large error that can be used to detect the target. Actual data taken by a Ku band radar are used to compare the proposed method with another method to estimate the Weibull parameters and with the Weibull CFAR detector. Order statistics estimation requires a small number of samples and can be used to find the local value of Weibull clutter parameters and, thus, the proposed method requires less computational time to find the Weibull parameters.

  • An X-Band Phased Array Antenna with a Large Elliptical Aperture

    Yoshihiko KUWAHARA  Toru ISHITA  Yoshihiko MATSUZAWA  Yasunori KADOWAKI  

     
    PAPER-Radar System

      Vol:
    E76-B No:10
      Page(s):
    1249-1257

    Monopulse technique is widely used for tracking radars. For tracking at a low elevation angle, a narrow beam is required in the elevation plane to reduce multipath signals such as gound reflections. In this case, an elliptical aperture is desired. We have developed an antenna with a high tracking accuracy and a high aperture efficiency which is composed of a monopulse feed and an elliptical aperture. In this paper we discuss a design of the feed through lens array with an elliptical aperture and a new monopulse feed. Evaluation test results of a production model proved validity of our design and showed good performance.

  • Scattering Characteristics of Stratified Chiral Slab

    Mitsuru TANAKA  Atsushi KUSUNOKI  

     
    PAPER-Scattering and Diffraction

      Vol:
    E76-C No:10
      Page(s):
    1443-1448

    Scattering characteristics of a stratified chiral slab, which is composed of dielectric chiral layers of different material properties and thicknesses, are extensively explored. Design considerations for optical filters are also presented for both the cases of normal and oblique incidence. In the analysis, the incident field is assumed to be a plane monochromatic wave of any arbitrary polarization. The transmitted and reflected electric fields are obtained by noting the fact that the electric field inside a chiral medium is expressed as a sum of the left- and right-circularly polarized plane waves of different phase velocities. Then one can describe the power densities and the Stokes parameters of the transmitted and reflected waves in terms of their field components. As is well known,the Stokes parameters characterize every possible state of polarization of a plane wave. Numerical examples are presented to show the effects of chirality on polarization conversion properties of the stratified chiral slab. The cross- and co-polarized powers and the Stokes parameters of the transmitted and reflected waves are computed for the incident wave of perpendicular polarization. The numerical results demonstrate novel depolarization properties of the slab with application to the design of efficient filters active at the optical region. It is seen from the results that the stratified chiral slab acts as a polarization-conversion transmission filter that passes only a cross-polarized component of the transmitted wave at some frequency band. Furthermore, the slab may be utilized as an antireflection filter for both the cross- and co-po1arized components of the reflected wave at the band region.

  • A Fast Automatic Fingerprint Identification Method Based on a Weighted-Mean of Binary Image

    Yu HE  Ryuji KOHNO  Hideki IMAI  

     
    PAPER

      Vol:
    E76-A No:9
      Page(s):
    1469-1482

    This paper first proposes a fast fingerprint identification method based on a weighted-mean of binary image, and further investigates optimization of the weights. The proposed method uses less computer memory than the conventional pattern matching method, and takes less computation time than both the feature extraction method and the pattern matching method. It is particularly effective on the fingerprints with a small angle of inclination. In order to improve the identification precision of the proposed basic method, three schemes of modifying the proposed basic method are also proposed. The performance of the proposed basic method and its modified schemes is evaluated by theoretical analysis and computer experiment using the fingerprint images recorded from a fingerprint read-in device. The numerical results showed that the proposed method using the modified schemes can improve both the true acceptance rate and the false rejection rate with less memory and complexity in comparison with the conventional pattern matching method and the feature extraction method.

29701-29720hit(30728hit)