The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

30061-30080hit(30728hit)

  • Prospects of Multiple-Valued VLSI Processors

    Takahiro HANYU  Michitaka KAMEYAMA  Tatsuo HIGUCHI  

     
    INVITED PAPER

      Vol:
    E76-C No:3
      Page(s):
    383-392

    Rapid advances in integrated circuit technology based on binary logic have made possible the fabrication of digital circuits or digital VLSI systems with not only a very large number of devices on a single chip or wafer, but also high-speed processing capability. However, the advance of processing speeds and improvement in cost/performance ratio based on conventional binary logic will not always continue unabated in submicron geometry. Submicron integrated circuits can handle multiple-valued signals at high speed rather than binary signals, especially at data communication level because of the reduced interconnections. The use of nonbinary logic or discrete-analog signal processing will not be out of the question if the multiple-valued hardware algorithms are developed for fast parallel operations. Moreover, in VLSI or ULSI processors the delay time due to global communications between functional modules or chips instead of each functional module itself is the most important factors to determine the total performance. Locally computable hardware implementation and new parallel hardware algorithms natural to multiple-valued data representation and circuit technologies are the key properties to develop VLSI processors in submicron geometry. As a result, multiple-valued VLSI processors make it possible to improve the effective chip density together with the processing speed significantly. In this paper, we summarize several potential advantages of multiple-valued VLSI processors in submicron geometry due to great reduction of interconnection and due to the suitability to locally computable hardware implementation, and demonstrate that some examples of special-purpose multiple-valued VLSI processors, which are a signed-digit arithmetic VLSI processor, a residue arithmetic VLSI processor and a matching VLSI processor can achieve higher performance for real-world computing system.

  • Design of a Multiple-Valued Cellular Array

    Naotake KAMIURA  Yutaka HATA  Kazuharu YAMATO  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    412-418

    A method is proposed for realizing any k-valued n-variable function with a celluler array, which consists of linear arrays (called input arrays) and a rectangular array (called control array). In this method, a k-valued n-variable function is divided into kn-1 one-variable functions and remaining (n1)-variable function. The parts of one-variable functions are realized by the input arrays, remaintng the (n1)-variable function is realized by the control array. The array realizing the function is composed by connecting the input arrays with the control array. Then, this array requires (kn2)kn-1 cells and the number is smaller than the other rectangular arrays. Next, a ternary cell circuit and a literal circuit are actually constructed with CMOS transistors and NMOS pass transistors. The experiment shows that these circuits perform the expected operations.

  • Multiple-Valued Static Random-Access-Memory Design and Application

    Zheng TANG  Okihiko ISHIZUKA  Hiroki MATSUMOTO  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    403-411

    In this paper, a general theory on multiple-valued static random-access-memory (RAM) is investigated. A criterion for a stable and an unstable modes is proved with a strict mathematical method and expressed with a diagrammatic representation. Based on the theory, an NMOS 6-transistor ternary and a quaternary static RAM (SRAM) cells are proposed and simulated with PSPICE. The detail circuit design and realization are analyzed. A 10-valued CMOS current-mode static RAM cell is also presented and fabricated with standard 5-µm CMOS technology. A family of multiple-valued flip-flops is presented and they show to have desirable properties for use in multiple-valued sequential circuits. Both PSPICE simulations and experiments indicate that the general theory presented are very useful and effective tools in the optimum design and circuit realization of multiple-valued static RAMs and flip-flops.

  • VLSI-Oriented Multiple-Valued Current-Mode Arithmetic Circuits Using Redundant Number Representations

    Shoji KAWAHITO  Yasuhiro MITSUI  Tetsuro NAKAMURA  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    446-454

    This paper presents a VLSI-oriented arithmetic design method using a radix-2 redundant number representation with digit set {0, 1, 2} and multiple-valued current-mode (MVCM) circuit technology. We propose a carry-propagation-free (CPF) parallel addition method with redundant digit set {0, 1, 2} which is suitable for the design with MVCM circuits. Several types of CPF parallel adders are compared and the proposed CPF parallel adder with MVCM circuits offers the best total performance with respect to speed, complexity, and power dissipation. The designed basic arithmetic circuits has sufficient noise immunity to the supply voltage fluctuation which is important for stable operations of the VLSI circuits. The CPF parallel adder is effectively used as the reduction scheme of partial products in a high-speed compact multiplier. For example, the designed 3232 bit multiplier reduces the number of active elements to two-third and the number of interconnections to one-fifth of the corresponding binary Wallace tree multiplier, where the speed is almost the same. The structure is simple and regular. The static power dissipation of the designed 32-bit multiplier is estimated to be the mean value of 212 mW and the worst case of 708 mW. The total power including dynamic power dissipation would not be so large compared with that of the 32-bit binary CMOS multiplier reported under 10 MHz operation.

  • A Theoretical Analysis of Neural Networks with Nonzero Diagonal Elements

    Masaya OHTA  Yoichiro ANZAI  Shojiro YONEDA  Akio OGIHARA  

     
    PAPER

      Vol:
    E76-A No:3
      Page(s):
    284-291

    This article analyzes the property of the fully interconnected neural networks as a method of solving combinatorial optimization problems in general. In particular, in order to escape local minimums in this model, we analyze theoretically the relation between the diagonal elements of the connection matrix and the stability of the networks. It is shown that the position of the global minimum point of the energy function on the hyper sphere in n dimensional space is given by the eigen vector corresponding the maximum eigen value of the connection matrix. Then it is shown that the diagonal elements of the connection matrix can be improved without loss of generality. The equilibrium points of the improved networks are classified according to their properties, and their stability is investigated. In order to show that the change of the diagonal elements improves the potential for the global minimum search, computer simulations are carried out by using the theoretical values. In according to the simulation result on 10 neurons, the success rate to get the optimum solution is 97.5%. The result shows that the improvement of the diagonal elements has potential for minimum search.

  • Associative Neural Network Models Based on a Measure of Manhattan Length

    Hiroshi UEDA  Yoichiro ANZAI  Masaya OHTA  Shojiro YONEDA  Akio OGIHARA  

     
    PAPER

      Vol:
    E76-A No:3
      Page(s):
    277-283

    In this paper, two models for associative memory based on a measure of manhattan length are proposed. First, we propose the two-layered model which has an advantage to its implementation by using PDN. We also refer to the way to improve the recalling ability of this model against noisy input patterns. Secondly, we propose the other model which always recalls the nearest memory pattern in a measure of manhattan length by lateral inhibition. Even if a noise of input pattern is so large that the first model can not recall, this model can recall correctly against such a noisy pattern. We also confirm the performance of the two models by computer simulations.

  • Method for Measuring Glossiness of Plane Surfaces Based on Psychological Sensory Scale

    Seiichi SERIKAWA  Teruo SHIMOMURA  

     
    PAPER-Human Communication

      Vol:
    E76-A No:3
      Page(s):
    439-446

    Although the perception of gloss is based on human visual perception, some methods for measuring glossiness, in contrast to human ability, have been proposed involving plane surfaces. Glossiness defined in these methods, however, does not correspond with psychological glossiness perceived by the human eye over the wide range from relatively low gloss to high gloss. In addition, the change in the incident angle causes a deviation in the measurement of glossiness. A new method for measuring glossiness is proposed in this study. For the new definition of glossiness Gd, the brightness function is utilized. We also extract the value of smoothness of the object's surfaces for use as a factor of glossiness. The measuring equipment consists of a light source, an optical system and a personal computer. Glossiness Gd of paper and plastics is measured with the use of this equipment. In all samples, a strong correlation, with a correlation coefficient of more than 0.97, has been observed between Gd and psychological glossiness Gph. The variance of measured glossiness due to the change in the incident angle of light is small in comparison with that of conventional methods. Based on these findings, it has been found that this method is useful for measuring glossiness of plane objects in the range from relatively low gloss to high gloss.

  • Multiple-Valued VLSI Image Processor Based on Residue Arithmetic and Its Evaluation

    Makoto HONDA  Michitaka KAMEYAMA  Tatsuo HIGUCHI  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    455-462

    The demand for high-speed image processing is obvious in many real-world computations such as robot vision. Not only high throughput but also small latency becomes an important factor of the performance, because of the requirement of frequent visual feedback. In this paper, a high-performance VLSI image processor based on the multiple-valued residue arithmetic circuit is proposed for such applications. Parallelism is hierarchically used to realize the high-performance VLSI image processor. First, spatially parallel architecture that is different from pipeline architecture is considered to reduce the latency. Secondly, residue number arithmetic is introduced. In the residue number arithmetic, data communication between the mod mi arithmetic units is not necessary, so that multiple mod mi arithmetic units can be completely separated to different chips. Therefore, a number of mod mi multiply adders can be implemented on a single VLSI chip based on the modulus-slice concept. Finally, each mod mi arithmetic unit can be effectively implemented in parallel structure using the concept of a pseudoprimitive root and the multiple-valued current-mode circuit technology. Thus, it is made clear that the throughout use of parallelism makes the latency 1/3 in comparison with the ordinary binary implementation.

  • A Synthesis of Complex Allpass Circuits Using the Factorization of Scattering Matrices--Explicit Formulae for Even-Order Real Complementary Filters Having Butterworth or Chebyshev Responses--

    Nobuo MURAKOSHI  Eiji WATANABE  Akinori NISHIHARA  

     
    PAPER

      Vol:
    E76-A No:3
      Page(s):
    317-325

    Low-sensitivity digital filters are required for accurate signal processing. Among many low-sensitivity digital filters, a method using complex allpass circuits is well-known. In this paper, a new synthesis of complex allpass circuits is proposed. The proposed synthesis can be realized more easily either only in the z-domain or in the s-domain than conventional methods. The key concept for the synthesis is based on the factorization of lossless scattering matrices. Complex allpass circuits are interpreted as lossless digital two-port circuits, whose scattering matrices are factored. Furthermore, in the cases of Butterworth, Chebyshev and inverse Chebyshev responses, the explicit formulae for multiplier coefficients are derived, which enable us to synthesize the objective circuits directly from the specifications in the s-domain. Finally design examples verify the effectiveness of the proposed method.

  • Architecture of a Parallel Multiple-Valued Arithmetic VLSI Processor Using Adder-Based Processing Elements

    Katsuhiko SHIMABUKURO  Michitaka KAMEYAMA  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    463-471

    An adder-based arithmetic VLSI processor using the SD number system is proposed for the applications of real-time computation such as intelligent robot system. Especially in the intelligent robot control system, not only high throughput but also small latency is a very important subject to make quick response for the sensor feedback situation, because the next input sample is obtained only after the robot actually moves. It is essential in the VLSI architecture for the intelligent robot system to make the latency as small as possible. The use of parallelism is an effective approach to reduce the latency. To meet the requirement, an architecture of a new multiple-valued arithmetic VLSI processor is developed. In the processor, addition and subtraction are performed by using the single adderbased processing element (PE). More complex basic arithmetic operations such as multiplication and division are performed by the appropriate data communications between the adder-based PEs with preserving their parallelism. In the proposed architecture, fine-grain parallel processing at the adder-based PE level is realized, and all the PEs can be fully utilized for any parallel arithmetic operations according to adder-based data dependency graph. As a result, the processing speed will be greatly increased in comparison with the conventional parallel processors having the different kinds of the arithmetic PEs such as an adder, a multiplier and a divider. To realize the arithmetic VLSI processor using the adder-based PEs, we introduce the signed-digit (SD) number system for the parallel arithmetic operations because the SD arithmetic has the advantage of modularity as well as parallelism. The multiple-valued bidirectional currentmode technology is also used for the implementation of the compact and high-speed adder-based PE, and the reduction of the number of the interconnections. It is demonstrated that these advantges of the multiple-valued technology are fully used for the implementation of the arithmetic VLSI processor. As a result, the latency of the proposed multiple-valued processor is reduced to 25% that of the binary processor integrated in the same chip size.

  • Geometric Algorithms for Linear Programming

    Hiroshi IMAI  

     
    INVITED PAPER

      Vol:
    E76-A No:3
      Page(s):
    259-264

    Two computational-geometric approaches to linear programming are surveyed. One is based on the prune-and-search paradigm and the other utilizes randomization. These two techniques are quite useful to solve geometric problems efficiently, and have many other applications, some of which are also mentioned.

  • Prospects for Multiple-Valued Integrated Circuits

    Kenneth Carless SMITH  P.Glenn GULAK  

     
    INVITED PAPER

      Vol:
    E76-C No:3
      Page(s):
    372-382

    The evolution of Multiple-Valued Logic (MVL) circuits has been inexorably tied to the rapid technological changes induced by evolving needs and emerging developments in computing methodologies. Unfortunately for MVL, the numbers of designers of technologies and circuits whose lives are dedicated to the improvement of binary techniques, are large and overwhelming. Correspondingly, technological developments in MVL typically await the appearance of a problem or technique in the larger binary world to motivate and/or make possible some new advance. Such opportunities are inevitably quite transient since each such problem is simultaneously attacked by many others of a more conventional bent, and, as well, each technological change begets yet another, quickly. It is in the sensing of this reality that the present paper is written. Correspondingly, its thrust is two-fold: One target is the possibility of encouraging a leap ahead through modest technological projection. The other is the possibility of identifying application areas that already exist in this unbalanced competition, but which are specially suited to multiple-valued solutions. For example, it has been clear for decades that one such area is that of arithmetic. Correspondingly, we in MVL must strive quickly to concentrate our efforts on applications that exploit such demonstrable strengths. Some such applications are includes here; others are visible historically, many probably remain to be found: Search on!

  • Multiple-Valued Memory Using Floating Gate Devices

    Takeshi SHIMA  Stephanie RINNERT  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    393-402

    This paper discusses multiple-valued memory circuit using floating gate devices. It is an object of the paper to provide a new and improved analog memory device, which permits the memory of an amount of charges that accurately corresponds to analog information to be stored.

  • A Kalman Filtering with a Gaze-Holding Algorithm for Intentionally Controlling a Displayed Object by the Line-of-Gaze

    Hidetomo SAKAINO  Akira TOMONO  Fumio KISHINO  

     
    PAPER-Control and Computing

      Vol:
    E76-A No:3
      Page(s):
    409-424

    In a display system with a line-of-gaze (LOG) controller, it is difficult to make the directions and motions of a LOG-controlled object coincide as closely as possible in the display with the user's intended LOG-directions and motions. This is because LOG behavior is not only smooth, but also saccadic due to the problem of involuntary eye movement. This article introduces a flexible on-line LOG-control scheme to realize nearly perfect LOG operation. Using a mesh-wise cursor pattern, the first visual experiment elucidates subjectively that a Kalman Filter (KF) for smoothing and predicting is effective in filtering out macro-saccadic changes of the LOG and in predicting sudden changes of the saccade while movement is in progress. It must be assumed that the LOG trajectory can be described by a linear position-velocity-acceleration approximation of Sklansky Model (SM). Furthermore, the second experiment uses a four-point pattern and simulations to scrutinize the two physical properties of velocity and direction-changes of the LOG in order to quantitatively and efficiently resolve "moving" and "gazing". In order to greatly reduce the number of LOG-small-position changes while gazing, the proposed Gaze-Holding algorithm (GH) with a gaze-potential function is combined with the KF. This algorithm allows the occurrence frequency of the micro-saccade to be reduced from approximately 25 Hz to 1 or 2 Hz. This great reduction in the frequency of the LOG-controlled object moves is necessary to achieve the user's desired LOG-response while gazing. Almost perfect LOG control is accomplished by the on-line SM+KF+GH scheme while either gazing or moving. A menu-selection task was conducted to verify the effectiveness of the proposed on-line LOG-control method.

  • Neuron MOS Voltage-Mode Circuit Technology for Multiple-Valued Logic

    Tadashi SHIBATA  Tadahiro OHMI  

     
    INVITED PAPER

      Vol:
    E76-C No:3
      Page(s):
    347-356

    We have developed a new functional MOS transistor called Neuron MOSFET (abbreviated as neuMOS or νMOS) which simulates the function of biological neurons. The new transistor is capable of executing a weighted sum calculation of multiple input signals and threshold operation based on the result of weighted summation, all in the voltage mode at a single transistor level. By utilizing its neuron-like very powerful functional capability, various circuits essential for multiple-valued logic operation have been designed using quite simple circuit configurations. The circuit designs for data conversion between the multivalued and binary logic systems and for generating universal literal functions are described and their experimental verifications are presented. One of the most important features of νMOS multivalued lagic circuit is that the circuit operates basically in the voltage mode, thus greatly reducing the power dissipation as compared to the conventional current mode circuitry. This is indeed most essential in implementing multivalued logic systems in ultra large scale integration. Another important feature of νMOS design is in its flexibility of implementing logic functions. The functional form of a universal literal function, for instance, can be arbitrarily altered by external signals without any modifications in its hardware configuration. A circuit representing multiple-valued multithreshold functions is also proposed.

  • Multi-Step Function MOS Transistor Circuits

    Shinji KARASAWA  Kazuhiko YAMANOUCHI  

     
    INVITED PAPER

      Vol:
    E76-C No:3
      Page(s):
    357-363

    This paper describes operating characteristics of a new device named multi-step function MOS transistor (MSF MOSFET) which has stair-shaped I-V curve caused by a stairshaped gap between drain and gate. A quantizing inverter is obtained by using only a single MSF MOSFET as a coupling element of an emitter common amplifier. A pair of the quantizing inverters whose input and output are cross-coupled to each other has multi-stable states. This multiple-valued (MV) flip-flop is available for MV registers and MV memories whose states are changeable by an analog input voltage.

  • Timing Optimization of Multi-Level Networks Using Boolean Relations

    Yuji KUKIMOTO  Masahiro FUJITA  

     
    PAPER

      Vol:
    E76-A No:3
      Page(s):
    362-369

    In this paper we propose a new timing optimization technique for multi-level networks by restructuring multiple nodes simultaneously. Multi-output subcircuits on critical paths are extracted and resynthesized so that the delays of the paths are reduced. The complete design space of the subcircuits is captured by Boolean relations, which allow us to perform more powerful resynthesis than previous approaches using don't cares. Experimental results are reported to show the effectiveness of the proposed technique.

  • Considerations on Future Customer Premises Network

    Takeo FUKUDA  Toshikazu KODAMA  Yasuhiro KATSUBE  

     
    PAPER

      Vol:
    E76-B No:3
      Page(s):
    213-219

    Broadband ISDN based on ATM technologies is expected to offer enhanced and sophisticated services to customers. Since ATM will first be introduced in the business communication world, it will be worth to discuss the future image of desirable ATM customer premises network (CPN). In this paper, we first consider the possible migration scenario of Broadband CPN and some important requirements for the realization of the scenario. Then, we discuss the key issues to be solved for future ATM-CPN, which include network topology, traffic control and connectionless communication services.

  • Structural and Behavioral Analysis of State Machine Allocatable Nets Based on Net Decomposition

    Dong-Ik LEE  Tadaaki NISHIMURA  Sadatoshi KUMAGAI  

     
    PAPER

      Vol:
    E76-A No:3
      Page(s):
    399-408

    Free choice nets are a class of Petri nets, which can represent the substantial features of systems by modeling both choice and concurrency. And in the modelling and design of a large number of concurrent systems, live and safe free choice nets (LSFC nets) have been explored their structural characteristics. On the other hand, state machine decomposable nets (SMD nets) are a class of Petri nets which can be decomposed by a set of strongly connected state machines (S-decomposition). State machine allocatable nets (SMA nets) are a well-behaved class of SMD nets. Of particular interest is the relation between free choice nets and SMA nets such that a free choice net has a live and safe marking if and only if the net is an SMA net. That is, the structure of an LSFC net is an SMA net. Recently, the structure of SMA net has been completely characterized by the authors based on an S-decomposition. In other words, a necessary and sufficient condition for a net to be an SMA net is obtained in terms of the net structure where synchronization between strongly connected state machine components (S-components) has been clarified. Unfortunately, it requires tremendous amount of time and spaces to decide a given net to be an SMA net by applying the condition directly. Moreover, there exist no efficient algorithm to decide the liveness and safeness of a given SMA net that lessens the usefulness of decomposition techniques. In this paper, we consider efficient polynomial order algorithms to decide whether a given net is a live and safe SHA net.

  • Automatic Evaluation of English Pronunciation Based on Speech Recognition Techniques

    Hiroshi HAMADA  Satoshi MIKI  Ryohei NAKATSU  

     
    PAPER-Speech Processing

      Vol:
    E76-D No:3
      Page(s):
    352-359

    A new method is proposed for automatically evaluating the English pronunciation quality of non-native speakers. It is assumed that pronunciation can be rated using three criteria: the static characteristics of phonetic spectra, the dynamic structure of spectrum sequences, and the prosodic characteristics of utterances. The evaluation uses speech recognition techniques to compare the English words pronounced by a non-native speaker with those pronounced by a native speaker. Three evaluation measures are proposed to rate pronunciation quality. (1) The standard deviation of the mapping vectors, which map the codebook vectors of the non-native speaker onto the vector space of the native speaker, is used to evaluate the static phonetic spectra characteristics. (2) The spectral distance between words pronounced by the non-native speaker and those pronounced by the native speaker obtained by the DTW method is used to evaluate the dynamic characteristics of spectral sequences. (3) The differences in fundamental frequency and speech power between the pronunciation of the native and non-native speaker are used as the criteria for evaluating prosodic characteristics. Evaluation experiments are carried out using 441 words spoken by 10 Japanese speakers and 10 native speakers. One half of the 441 words was used to evaluate static phonetic spectra characteristics, and the other half was used to evaluate the dynamic characteristics of spectral sequences, as well as the prosodic characteristics. Based on the experimental results, the correlation between the evaluation scores and the scores determined by human judgement is found to be 0.90.

30061-30080hit(30728hit)