The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

30461-30480hit(30728hit)

  • Superconductive Small Antennas with Thin-Film Matching Circuits

    Naobumi SUZUKI  Yasuhiro NAGAI  Keiichiro ITOH  Osamu MICHIKAMI  

     
    PAPER-Passive Devices

      Vol:
    E75-C No:8
      Page(s):
    906-910

    This paper describes the structure and properties of superconductive small antennas with thin-film matching circuits. These circuits make it possible to realize small antennas, 38 mm20 mm16 mm in size. This is one quarter the length of our previously reported ceramic antennas. The actual gain of this antennas was -4.5 dBi at 470 MHz. This value is 5.5 dB higher than that of Cu antennas with exactly the same structure.

  • A Design Method of Variable FIR Filters Using Multi-Dimensional Filters

    Toshiyuki YOSHIDA  Akinori NISHIHARA  Nobuo FUJII  

     
    PAPER

      Vol:
    E75-A No:8
      Page(s):
    964-971

    This paper proposes a new design method of variable FIR digital filters. The method uses a multi-dimensional linearphase FIR filter as a prototype. The principle of the proposed method is based on the fact that the crosssectional characteristics of a 2-D filter along with a line vary if the intersection of this line is changed. The filter characteristics can be varied by recalculating all the filter coefficients from proposed equations, which leads to an advantage that the variable range is very wide. Another advantage is that the passband and stopband deviations are completely predetermined in the design procedures and that the passband edge can be accurately settled to a desired frequency while keeping the transition band width unchanged. First the proposed design method is explained and the effect of the transition band of 2-D filters is discussed. Then the calculation cost required in updating the filter coefficients are considered. Finally two design examples are presented and the proposed method is compared with the existing one, which shows the usefulness of our method.

  • Wave Distribution Functions of Magnetospheric VLF Waves with Multiple Field Components: The Effect of the Polarization Model in the Integration Kernels on the Reconstruction of Wave Distribution Functions

    Shin SHIMAKURA  Masashi HAYAKAWA  

     
    PAPER

      Vol:
    E75-A No:8
      Page(s):
    1014-1019

    The wave distribution functions (WDFs) have been reconstructed by means of the maximum entropy inversion to the observed spectral matrix composed of the auto- and cross-power spectra among the three field components (Bx, By and Ez) in which the exactly right-handed circular polarization is taken in the integration kernels. The purpose of this paper is to investigate the properties of wave distribution functions reconstructed for wave sources whose central polarization is somewhat deviated from right-handed circular and to study (1) the WDF's by using the right-handed circular polarization in the kernels, (2) the effect of larger deviations for the polarization of elementary plane waves consituting the wave source, (3) the WDF's based on the elliptical polarization kernels and (4) the effect of limiting the number of eigenvalues. It is then found that changing the polarization model in the integration kernels would be helpful in finding out the polarization of the actually observed signals.

  • Generalized Interpolatory Approximation of Multi-Dimensional Signals Having the Minimum Measure of Error

    Takuro KIDA  Hiroshi MOCHIZUKI  

     
    PAPER-Multidimensional Signals, Systems and Filters

      Vol:
    E75-A No:7
      Page(s):
    794-805

    Extended form of interpolatory approximation is presented for tne n-dimensional (n-D) signals whose generalized spectrums have weighted norms smaller than a given positive number. The presented approximation has the minimum measure of approximation error among all the linear and the nonlinear approximations using the same generalized sample values.

  • Orthogonal Discriminant Analysis for Interactive Pattern Analysis

    Yoshihiko HAMAMOTO  Taiho KANAOKA  Shingo TOMITA  

     
    LETTER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E75-D No:4
      Page(s):
    602-605

    In general, a two-dimensional display is defined by two orthogonal unit vectors. In developing the display, discriminant analysis has a shortcoming that the extracted axes are not orthogonal in general. First, in order to overcome the shortcoming, we propose discriminant analysis which provides an orthonormal system in the transformed space. The transformation preserves the discriminatory ability in terms of the Fisher criterion. Second, we present a necessary and sufficient condition that discriminant analysis in the original space provides an orthonormal system. Finally, we investigate the relationship between orthogonal discriminant analysis and the Karhunen-Loeve expansion in the original space.

  • Runlength-Limited Codes which Turn Peak-Shift Errors into Unidirectional Byte Errors

    Yuichi SAITOH  Hideki IMAI  

     
    LETTER

      Vol:
    E75-A No:7
      Page(s):
    898-900

    In this letter, we consider a magnetic or optical recording system employing a concatenated code that consists of a runlength-limited (d, k) block code as an inner code and a byte-error-correcting code as an outer code. (d, k) means that any two consecutive ones in the code bit stream are separated by at least d zeros and by at most k zeros. The minimum separation d and the maximum separation k are imposed in order to reduce intersymbol interference and extract clock control from the received bit stream, respectively. This letter recommends to use as the outer code a unidirectional-byte-error-correcting code instead of an ordinary byte-error-correcting code. If we devise the mapping of the code symbols of the outer code onto the codewords of the inner code, we may improve the error performance. Examples of the mappings are described.

  • Parametric Analysis of Static Load Balancing of Multi-Class Jobs in a Distributed Computer System

    Chonggun KIM  Hisao KAMEDA  

     
    PAPER-Computer Networks

      Vol:
    E75-D No:4
      Page(s):
    527-534

    The effects of changing system parameters on job scheduling policies are studied for load balancing of multi-class jobs in a distributed computer system that consists of heterogeneous host computers connected by a single-channel communications network. A job scheduling policy decides which host should process the arriving jobs. We consider two job scheduling policies. The one is the overall optimal policy whereby jobs are scheduled so as to minimize the overall mean job response time. Tantawi and Towsley obtained the algorithm that gives the solution of the policy in the single class job environment and Kim and Kameda extended it to the multiple job class environment. The other is the individually optimal policy whereby jobs are scheduled so that every job may feel that its own expected response time is minimized. We can consider three important system parameters in a distributed computer system: the communication time of the network, the processing capacity of each node, and the job arrival rate of each node. We examine the effects of these three parameters on the two load balancing policies by numerical experiment.

  • Refining Theory with Multiple Faults

    Somkiat TANGKITVANICH  Masamichi SHIMURA  

     
    PAPER

      Vol:
    E75-D No:4
      Page(s):
    470-476

    This paper presents a system that automatically refines the theory expressed in the function-free first-order logic. Our system can efficiently correct multiple faults in both the concept and subconcepts of the theory, given only the classified examples of the concept. It can refine larger classes of theory than existing systems can since it has overcome many of their limitations. Our system is based on a new combination of an inductive and an explanation-based learning algorithms, which we call the biggest-first multiple-example EBL (BM-EBL). From a learning perspective, our system is an improvement over the FOIL learning system in that our system can accept a theory as well as examples. An experiment shows that when our system is given a theory that has the classification error rate as high as 50%, it can still learn faster and with more accuracy than when it is not given any theory.

  • Plasma-Parameter-Extraction for Minimizing Contamination and Damage in RIE Processes

    Takeo YAMASHITA  Satoshi HASAKA  Iwao NATORI  Tadahiro OHMI  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    839-843

    The two most important parameters in reactive ion etching process, ion bombardment energy and flux, were extracted through a simple RF waveform measurement at the excitation electrode in a conventional cathode-coupled plasma RIE system. By using the extracted plasma parameters, damage and contamination in Si substrates induced by reactive ion etching in a SiCl4 plasma were investigated. A very convenient map representation of ion energy and ion flux was introduced in understanding the etching process occurring in the RIE system.

  • Error Analysis of Circle Drawing Using Logarithmic Number Systems

    Tomio KUROKAWA  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E75-D No:4
      Page(s):
    577-584

    Logarithmic number systems (LNS) provide a very fast computational method. Their exceptional speed has been demonstrated in signal processing and then in computer graphics. But the precision problem of LNS in computer graphics has not been fully examined. In this paper analysis is made for the problem of LNS in picture generation, in particular for circle drawing. Theoretical error analysis is made for the circle drawing. That is, some expressions are developed for the relative error variances. Then they are examined by simulation experiments. Some comparisons are also done with floating point arithmetic with equivalent word length and dynamic range. The results show that the theory and the experiments agree reasonably well and that the logarithmic arithmetic is superior to or at least comparable to the corresponding floating point arithmetic with equivalent word length and dynamic range. Those results are also verified by visual inspections of actually drawn circles. It also shows that the conversion error (from integer to LNS), which is inherent in computer graphics with LNS, does not make too much influence on the total computational error for circle drawing. But it shows that the square-rooting makes the larger influence.

  • Plasmaless Dry Etching of Silicon Nitride Films with Chlorine Trifluoride Gas

    Yoji SAITO  Masahiro HIRABARU  Akira YOSHIDA  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    834-838

    Plasmaless etching using ClF3 gas has been investigated on nitride films with different composition. For the sputter deposited and thermally grown silicon nitride films containing no hydrogen, the etch rate increases and the activation energy decreases with increase of the composition ratio of silicon to nitrogen between 0.75 and 1.3. This fact indicates that the etching is likely to proceed through the reaction between Si and ClF3. The native oxide on the silicon-nitride films can also be removed with ClF3 gas. Ultra-violet light irradiation from a low pressure mercury lamp remarkably accelerates the removal of the native oxide and the etch rate of the thermally grown silicon-nitride films. For the plasma deposited films, the etch rate is strongly accelerate with increasing hydrogen content in the films, but the activation energy hardly depends on the bounded hydrogen in the films, consistent with the results for Si etching.

  • Analogical Reasoning as a Form of Hypothetical Reasoning

    Ryohei ORIHARA  

     
    PAPER

      Vol:
    E75-D No:4
      Page(s):
    477-486

    The meaning of analogical reasoning in locally stratified logic programs are described by generalized stable model (GSM) semantics. Although studies on the theoretical aspects of analogical reasoning have recently been on the increase, there have been few attempts to give declarative semantics for analogical reasoning. This paper takes notice of the fact that GSM semantics gives meaning to the effect that the negated predicates represent exceptional cases. We define predicates that denote unusual cases regarding analogical reasoning; for example, ab(x)p(x)g(x), where p(s), q(s), p(t) are given. We also add rules with negated occurrences of such predicates into the original program. In this way, analogical models for original programs are given in the form of GSMs of extended programs. A proof procedure for this semantics is presented. The main objective of this paper is not to construct a practical analogical reasoning system, but rather to present a framework for analyzing characteristics of analogical reasoning.

  • Periodic Solutions in the Hodgkin-Huxley Equations for Muscle

    Kazuko TERADA  Shuji YOSHIZAWA  Chiaki NISHIMURA  

     
    LETTER

      Vol:
    E75-A No:7
      Page(s):
    928-930

    Bifurcations of the periodic solutions of the space-clamped Hodgkin-Huxley equations for the muscle membrane are studied regarding the chloride conductance as a parameter. A limit cycle appears at a Hopf bifurcation and disappears at a homoclinic orbit. With high sodium permeability, a subcritical period doubling bifurcation occurs before it disappears.

  • Optical Array Imaging System

    Osamu IKEDA  

     
    PAPER-Optical Signal Processing

      Vol:
    E75-A No:7
      Page(s):
    890-896

    An optical array imaging system is presented with basic experimental results. First, a remote object is illuminated with laser light at an angle and the reflected light is detected with an array sensor after interfering it with the reference light. This process is repeated by changing the illumination angle to collect a set of fringe patterns, which are A/D converted and stored in a harddisk in a computer. Then, the data are processed on a computer, first, to estimate the complex-amplitude object wave fields, second, to derive the eigenvector with the maximum eigenvalue for the correlation of the estimated object fields, and finally, to form an image of the object. The derivation of the eigenvector follows an iterative algorithm, which can be interpreted as the process of repeating backward wave propagation of the field between the two apertures illuminating and detecting laser light. The eigenvector field can be expected to backpropagate to focus at a point on the object with the maximum coefficient of reflection, so that a beam-steering operation is applied to the eigenvector to form an image of the object. The method uses only the information of the array data and the lateral spacings of the receiving array (CCD) elements. Hence, the method can give good images of objects even if the reference light is uncollimated with an unknown distorted wavefront, and even if the illuminating angles are imprecise in three dimensions. Basic experimental results clearly show the usefulness of the method.

  • Intelligent Network Service Operation Architecture

    Hiroshi TOKUNAGA  Yukuo KIRIHARA  

     
    PAPER

      Vol:
    E75-B No:7
      Page(s):
    617-623

    The establishment of an intelligent network service operation architecture is important for facilitating development and integration of service operation systems. To do this, the basic concepts and goals of service operation items must first be clarified. Then, the necessary procedures as well as the required data on the behaviors of customers, operators and operation systems must be described. These various points are discussed based on an operation study methodology.

  • 2D Simulation of Particle Formation, Growth, and Deposition in Low-Pressure CVDs: Application of CONTAMINATE Version 2.0

    Evan WHITBY  Koichi TSUZUKI  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    852-859

    As part of Hitachi's development of clean semiconductor processing equipment, the Fluids Modeling Group of the Mechanical Engineering Research Laboratory is developing a computer model, CONTAMINATE, for simulating contamination of wafers in chemical vapor deposition (CVD) systems. CONTAMINATE is based on a 2D implementation of the SIMPLER algorithm for simulating convection/diffusion transport processes. The new model includes modules for simulating fluid flow, heat transfer, chemical reactions, and gas-phase formation and deposition of clusters and particles. CONTAMINATE outputs property fields and estimates of various film quality indices. Using CONTAMINATE we simulated a SiH4: O2: N2 gas mixture at 300 K flowing over a wafer heated to 700 K. System pressures were varied from 1-100 torr and SiH4 pressures from 0.1 to 10 torr. Deposition characteristics are in qualitative agreement with actual systems and are summarized as follows: (1) No particles larger than 0.1µm deposited for any of the conditions tested. (2) Film damage occurred above 10 torr, but no damage occurred below 10 torr. (3) Increasing SiH4 pressure at constant system pressure eliminated particle deposition because particles grew large enought that thermophoresis blocked particle diffusion. (4) Conformal deposition of featured surfaces was achieved only at 1 torr. (5) Film thickness variation over the diameter of the wafer was 15% at 100 torr, 3% at 10 torr, and 1% at 1 torr.

  • Containment Problems for Pattern Languages

    Yasuhito MUKOUCHI  

     
    PAPER

      Vol:
    E75-D No:4
      Page(s):
    420-425

    A pattern is a finite string of constant symbols and variable symbols. The language of a pattern is the set of all strings obtained by substituting any nonnull constant string for each variable symbol in the pattern. The class of pattern languages was introduced by Angluin in 1979 as a concrete class which is inferable from positive data. In this paper, we consider the decision problem whether for given two patterns there is a containment relation between their languages, which was posed by Angluin and its decidability remains open. We give some sufficient conditions to make this problem decidable. We also introduce the notions of generalizations and minimal generalizations common to a set of patterns. We characterize the above open problem using the minimal generalization.

  • Polynomial Time Inference of Unions of Two Tree Pattern Languages

    Hiroki ARIMURA  Takeshi SHINOHARA  Setsuko OTSUKI  

     
    PAPER

      Vol:
    E75-D No:4
      Page(s):
    426-434

    In this paper, we consider the polynomial time inferability from positive data for unions of two tree pattern languages. A tree pattern is a structured pattern known as a term in logic programming, and a tree pattern language is the set of all ground instances of a tree pattern. We present a polynomial time algorithm to find a minimal union of two tree pattern languages containing given examples. Our algorithm can be considered as a natural extension of Plotkin's least generalization algorithm, which finds a minimal single tree pattern language. By using this algorithm, we can realize a consistent and conservative polynomial time inference machine that identifies unions of two tree pattern languages from positive data in the limit.

  • Synchrotron Radiation Stimulated Evaporation of a-SiO2 Films and Its Application for Si Surface Cleaning

    Housei AKAZAWA  Yuichi UTSUMI  Jun-ichi TAKAHASHI  Tsuneo URISU  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    781-789

    Synchrotron radiation (SR) irradiation of amorphous SiO2 (a-SiO2) induces continuous removal of the SiO2 film without the use of etching gas. The dependence of the photostimulated evaporation rate on substrate temperature and SR intensity was measured and the reaction mechanism is discussed in detail separately for surface and bulk. Using the high material selectivity of the Sr-stimulated evaporation, a sefl-aligned process to fabricate a 0.6 µm line-and-space pattern is presented. Si surface cleaning is demonstrated as an example of application of this reaction to thin native oxide film grown by wet pretreatment. Si(100)-21 and Si(111)-77 structures were observed by reflection high energy electron diffraction (RHEED) at temperatures as low as 650. The difference between a-SiO2 and native oxide on the evaporation rate is higlighted. Epitaxial Si growth using disilane (Si2H6) gas occurs selectively in the SR-irradiated region on a Si(100) surface. Using SR irradiation in an ultrahigh vacuum, followed by residual oxide reduction by disilane, is proposed as an effective cleaning method.

  • Fault Tolerant Routing for Realization of BPC Permutations in Delta Networks

    Hiroshi MASUYAMA  Yuichirou MORITA  Hiroyuki OKADA  

     
    PAPER-Computer Networks

      Vol:
    E75-D No:4
      Page(s):
    557-568

    The numbers of passes required to realize permutations in the class of Bit Permute-Complement (BPC) permutations such as Bit-Reversal, Matrix-Transpose, Perfect-Shuffle, and Bit-Complement permutations in delta and extrastage delta networks are obtained. The influence of the faults in the networks on the number of passes required for them is also investigated. First, how different are the time complexities required when using a route decision algorithm and an improved algorithm having taken some inherent properties into consideration is discussed and solved by obtaining real data. Next, how many passes are required to realize BPC permutations in delta networks when faults are present and when not present, and how many passes can be reduced by using an extra-stage are discussed continuously. As an important criterion for the fault tolerance of multistage interconnecting networks, Dynamic Full Access (DFA) has been suggested. A weakness of DFA as applied to BPC permutations is that the ability to realize such permutations in a finite number of passes can not be always measured by a criterion of DFA, because of the uneven distributions of paths required for the permutations. This reason suggests the ability to realize such permutations must be investigated from the different angle.

30461-30480hit(30728hit)