The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

30361-30380hit(30728hit)

  • Net-Oriented Analysis and Design

    Shinichi HONIDEN  Naoshi UCHIHIRA  

     
    INVITED PAPER

      Vol:
    E75-A No:10
      Page(s):
    1317-1325

    Net-Oriented Analysis and Design (NOAD) is defined as three items: (1) Various nets are utilized as an effective modeling method. (2) Inter-relationships among verious nets are determined. (3) Verification or analysis methods for nets are provided and they are implemented based on the mathematical theory, that is Net theory. Very few methods have been presented to satisfy these three items. For example, the Real-Time SA method covers item (1) only. The Object-Oriented Analysis and Design method (OOA/OOD) covers items (1) and (2). NOAD can be regarded as an extension to OOA/OOD. This paper discusses how effectively various nets have been used in actual software development support metnods and tools and evaluates such several methods and tools from the NOAD viewpoint.

  • An Efficient Hypergraph Bisection Algorithm for Partitioning VLSI Circuits

    Yoko KAMIDOI  Shin'ichi WAKABAYASHI  Noriyoshi YOSHIDA  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1272-1279

    This paper presents an efficient heuristic algorithm for min-cut bisection of weighted hypergraphs. The proposed algorithm is based on a heuristic algorithm proposed by Kahng, which was devised for non-weighted hypergraph bisection, adopting a non-weighted graph called intersection graph to represent a given hypergraph. In the proposed algorithm, instead of an intersection graph, a bipartite graph called netgraph is newly introduced to explicitly represent the weights of nodes of a hypergraph. Using the netgraph, it is easy to partition a weighted hypergraph into two hypergraphs with same size. Computation time of the proposed method is O(m2), where m is the number of nodes of a given hypergraph. Experimental results with real circuit data show that the proposed method produces better solutions in shorter computation time compared with existing methods.

  • A VLSI Processor Architecture for a Back-Propagation Accelerator

    Yoshio HIROSE  Hideaki ANBUTSU  Koichi YAMASHITA  Gensuke GOTO  

     
    PAPER-Application Specific Processors

      Vol:
    E75-C No:10
      Page(s):
    1223-1231

    This paper describes a VLSI processor architecture designed for a back-propagation accelerator. Three techniques are used to accelerate the simulation. The first is a multi-processor approach where a neural network simulation is suitable for parallel processing. By constructing a ring network using several processors, the simulation speed is multiplied by the number of the processors. The second technique is internal parallel processing. Each processor contains 4 multipliers and 4 ALUs that all work in parallel. The third technique is pipelining. The connections of eight functional units change according to the current stage of the back-propagation algorithm. Intermediate data is sent from one functional unit to another without being stored in extra registers and data is processed in a pipeline manner. The data is in 24-bit floating point format (18-bit mantissa and 6-bit oxponent). The chip has about 88,000 gates, including microcode ROM for processor control, the processor is designed using 0.8-µm CMOS gate arrays, and the estimated performance at 40 MHz is 20 million connection updates per second (MCUPS). For a ring network with 4 processors, performance can be enhanced up to 90 MCUPS.

  • Isolation Characteristics in GaAs ICs on Semi-Insulating Substrate

    Kazuyuki INOKUCHI  Yuko SEKINO-ITOH  Yoshiaki SANO  

     
    PAPER

      Vol:
    E75-C No:10
      Page(s):
    1154-1164

    Isolation characteristics, which are important factors in designing GaAs ICs, are investigated focusing on leak current between circuit elements on a semi-insulating substrate and on the sidegating effect that results from leak current between MESFETs. We have found that the large leak current comes from the projecting edge, located outside the channel, of the gate electrode and that this leak current is the main cause of the sidegating effect. By taking into account quantitatively evaluated isolation characteristics, we can improve LSI design rules to reproducible and reliable operation.

  • A Petri Net Based Platform for Developing Communication Software Systems

    Mikio AOYAMA  Carl K. CHANG  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1348-1359

    An integrated platform INTEGRAL has been developed for developing large complex communication software systems. At the heart of INTEGRAL, a pair of graphical and textual specification languages, DISCOL (DIStributed Communication-Oriented Language), has been developed based on Petri nets. Around DISCOL, a wide variety of design and analysis tools have been integrated in coherent manner so that a seamless support from design to verification and testing are made available along with software life-cycle. The platform has been applied to the development of a PBX simulator named UICPBX. In the development, some real communication services have been fully specified with DISCOL. Such experiences have revealed the effectiveness of the proposed techniques.

  • PROSPEX: A Graphical LOTOS Simulator for Protocol Specifications with N Nodes

    Keiichi YASUMOTO  Teruo HIGASHINO  Toshio MATSUURA  Kenichi TANIGUCHI  

     
    PAPER

      Vol:
    E75-B No:10
      Page(s):
    1015-1023

    In LOTOS, requirements for a distributed system are described as a service definition. On the protocol level, each node (protocol entity) must exchange some data values and synchronization messages to provide a service described in a service definition. The tuple of the specifications of all nodes in the system which provide the service is called as a protocol specification. In order to develop the communication programs satisfying a given service definition, it is very important to develop the correct protocol specification. For this purpose, the simulation of protocol specifications is useful and it is desirable that the designer can observe how a protocol specification is executed in parallel and how synchronization messages are exchanged among the nodes. Therefore, we have developed a new tool named PROSPEX. For a given pair of a service definition and a protocol specification, it executes the protocol specification in parallel and shows its execution process graphically on X Window System. If the protocol specification executes an event sequence which does not satisfy the service definition, then PROSPEX informs it to the designer. In this paper, the design and usefulness of PROSPEX are described.

  • Petri Net Based Programming System for FMS

    Yoichi NAGAO  Hideaki OHTA  Hironobu URABE  Sadatoshi KUMAGAI  

     
    INVITED PAPER

      Vol:
    E75-A No:10
      Page(s):
    1326-1334

    This paper describes a programming system, K-NET for the development of control software for flexible manufacturing systems composed of robots, numerically-controlled machines, transfer machines and automatic storage/retrieval systems. K-NET is based on a high-level Petri net which makes it simple to express operational functions such as synchronization, interlock and concurrence in sequence control. Petri net in K-NET is colored one in which tokens have attributes, and timed one which can provide a notion of stochastic time. K-NET provides many kinds of boxes having specific functions, and gates specified the firing condition and the token flow control with IF-THEN rules. On the other hand, procedural language can be also used for information processing. K-NET can support all development stages including general design, detailed design, programming and testing. K-NET has an editor to input control specifications expressed with Petri net; a simulator to verify edited specifications; a generator to convert the net to C source programs for a computer or to ladder diagrams for a programmable controller; a reporter to print control specifications; and a monitor to display controller status in real-time. K-NET has been used in the development of control software for an automated guided vehicle system, and results show a 2/3rds cost-saving over development with conventional methods in which only procedural language is used.

  • Performance Evaluation of a Translation Look-Aside Buffer for Highly Integrated Microprocessors

    Norio UTSUMI  Akifumi NAGAO  Tetsuro YOSHIMOTO  Ryuichi YAMAGUCHI  Jiro MIYAKE  Hisakazu EDAMATSU  

     
    PAPER-RISC Technologies

      Vol:
    E75-C No:10
      Page(s):
    1202-1211

    This paper describes the performance evaluation of the Translation Look-aside Buffer (TLB) for highly integrated microprocessors, especially concerning the TLB in the SPARC Reference MMU specification. The analysis covers configurations, the number of entries, and replacement algorithms for the instruction TLB and the data TLB, which are assumed to be practically integrated on one die. We also present performance improvement using a Page Table Cache (PTC). We evaluate some types of TLB configurations with software simulation and excute the Systems Performance Evaluation Cooperative (SPEC) programs.

  • Optical Receiver and Laser Driver Circuits Implemented with 0.35 µm GaAs JFETs

    Chiaki TAKANO  Kiyoshi TANAKA  Akihiko OKUBORA  Jiro KASAHARA  

     
    PAPER

      Vol:
    E75-C No:10
      Page(s):
    1110-1114

    We have successfully developed an optical receiver and a laser driver circuit which were implemented with 0.35 µm GaAs JFETs (junction Field Effect Transistors). The 0.35 µm GaAs. JFET had the typical transconductance of 480 mS/mm with small drain conductance. An interdigit MSM (Metal Semiconductor Metal) -type photodetector and the JFETs were monolithically integrated on a GaAs substrate for the optical receiver. The fabricated optical receiver demonstrated Gb/s operation with a very low power consumption of 8.2 mW. The laser driver circuit operated at up to 4.0 Gb/s.

  • Four-Valued Dynamic Encoder and Decoder Circuits for CMOS Multivalued Logic Systems

    Kazutaka TANIGUCHI  Fumio UENO  Takahiro INOUE  Toshitsugu YAMASHITA  

     
    PAPER-Electronic Circuits

      Vol:
    E75-C No:10
      Page(s):
    1275-1280

    This paper presents four-valued dynamic encoder and decoder circuits for CMOS multivalued logic systems. The circuits presented here are implemented using a new logical voltage generator and a simplified pass transistor circuit. The logical voltage generator operates with higher speed than the conventional circuit. And the simplified pass transistor circuit contributes to reducing the number of transistors. these circuits have several advantages such as a simple configuration, high speed and low power dissipation. The circuit simulation for the proposed circuits has been performed using SPICE2 program.

  • Three-Dimensional Dynamics of Heavy-Ion Induced CMOS Latchup

    Hideyuki IWATA  Mitsuo YASUHIRA  Shinji ODANAKA  Takashi OHZONE  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E75-C No:10
      Page(s):
    1281-1290

    This paper presents the dynamics of heavy-ion induced latchup turn-on behavior in CMOS structures using a three-dimensional and transient device simulation. The three-dimensional effects of parasitic devices in a CMOS structure during latchup turn-on are discussed in detail when a heavy-ion strikes the CMOS structure. For different incident types, the dynamics of latchup turn-on behaviors are also simulated. Moreover, latchup immunities of the CMOS structure obtained by two- and three-dimensional calculations are compared for the different incident types. This result suggests that the rough relation between latchup immunity and heavy-ion incident energy can be estimated using a two-dimensional simulation.

  • A 1-K ECL Gate Array Implemented with Fully Self-Aligned AlGaAs/GaAs Heterojunction Bipolar Transistors

    Nobuyuki HAYAMA  Yuzuru TOMONOH  Hideki TAKAHASHI  Kazuhiko HONJO  

     
    PAPER

      Vol:
    E75-C No:10
      Page(s):
    1121-1126

    The paper describes the design considerations, fabrication process and performance of the newly developed 1-K ECL gate array implemented with fully self-aligned AlGaAs/GaAs hoterojunction bipolar transistors (HBTs). This gate array consists of 960 three-input OR/NOR ECL basic gates. It contains about 7,600 transistors in a chip area 8.15-mm8.45-mm. The basic (FI=FO=1, wiring length L=0-mm) and loaded (FI=FO=3, L=1-mm) gates exhibit delay times of 33-ps and 82-ps, respectively, with 8.5-mW/gate power dissipation. From the measured values, fan-in, fan-out and wiring delay times of 9-ps/FI, 7-ps/FO and 17-ps/mm are estimated, respectively. These results are in good agreement with the designed results obtained using "SPICE" simulation.

  • A New Array Architecture for 16 Mb DRAMs with Special Page Mode

    Masaki TSUKUDE  Tsukasa OISHI  Kazutami ARIMOTO  Hideto HIDAKA  Kazuyasu FUJISHIMA  

     
    PAPER-Integrated Electronics

      Vol:
    E75-C No:10
      Page(s):
    1267-1274

    An improved array architecture to realize fast access, low power dissipation, and wide operating margin, for the 16 Mbit DRAM is proposed. A high speed access is obtained by the fully embedded sense drive scheme for the RAS access time (tRAC), and the special page mode with the hierarchical I/O data bus lines and multi-purpose-register (MPR) for the column address access time (tCAA). A low power dissipation and wide operating margin are obtained by the improved twisted-bit-line (TBL) architecture with double dummy canceling. The 16 Mb DRAM using these architectures has 38 ns tRAC, 14 ns tCAA and 75 mA power dissipation at the typical condition.

  • Intelligent Tutoring Systems for Plant Operation

    Masahiro INUI  

     
    PAPER-Education

      Vol:
    E75-A No:10
      Page(s):
    1438-1444

    OGIS Research Institute and Osaka Gas have developed two intelligent tutoring systems (ITSs): PCTS (Process Control Training System) and PDTS (Power Distribution Training System). This paper describes a basic concept of an ITS for plant operation based on the experience of their development. The topics include: (1) The features and structure of PCTS (i.e., text based training and model based training, a simulation model based on OOP, an intelligent authoring system). (2) What kinds of stages are needed for training systems from the view point of cognitive science (i.e., verbal learning multiple discrimination learning, rule learning, compound rule learning problem solving). (3) How to detect trainees' missing operational steps and misoperations using the perturbation method.

  • Optimal Cycle Time and Facility Utilization of Production Systems Including Repetitive Process with Set-up Time Modelled by Timed Marked Graphs

    Masaki AKAZA  Dong-Ik LEE  Sadatoshi KUMAGAI  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1385-1393

    A job shop system typically seen in flexible manufacturing systems (FMS) is a system composed of a set of machines and a various kind of jobs processed with the machines. A production system of semiconductor fabrication is an example of job shop systems, which has main features of repetitive processes of one part and set-up times required for machines processing different types of parts. On the other hand, timed Petri nets are used for modelling and analyzing a wide variety of discrete event systems. There are many applications of timed Petri nets to the scheduling problems of job shop systems. The performance evaluation and steady state behaviors are studied by using the maximum cycle time of timed marked graphs. The aim of this paper is to propose a new model for production systems including repetitive processes and set-up time requirements which enables the quantitative analysis of real time system performance. In job shop systems such as a semiconductor fabrication system, it takes considerable amount of set-up time to prepare different types of chemical reactions and the model should take account of a set-up time for each machine. We focus upon the relationship between facility utilization factor and production cycle time in the steady state. In the proposed model, the minimum total set-up time can be attained. Quantitative relationship between utilization factor and production cycle time is derived by using the proposed model. A utilization factor of a system satisfying a given limit of the cycle time is evaluated, and the improvement of the utilization factor is considered. Conversely, we consider the improvement of the cycle time of a system satisfying a given limit of utilization factor.

  • A Study of System Resource Arrangement for a Concatenated Client Server System by Stochastic Petri Nets

    Satoshi MORIGUCHI  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1360-1368

    Recent trends in down-sizing have resulted in the development of client server systems for many industries. This paper considers the application of stochastic Petri nets with general firing times for modeling of a concatenated client server system and the use of discrete-event simulation methods for stochastic Petri nets to study its behavior. This approach enables us to assess the most appropriate resource set of a concatenated client server system on the quantitative basis of the performability and the occurrence of system down conditions. Thus, system consultation, a new application of stochastic Petri nets, is presented.

  • Diagnosis of Computer Systems by Stochastic Petri Nets Part (Application)

    Satoshi MORIGUCHI  Gerald S. SHEDLER  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1369-1377

    The pursuit of higher availability has resulted in the development of fault tolerant systems for many industries. However, system characteristics that can be perceived by the customer have never been diagnosed quantitatively. This paper considers the application of stochastic Petri nets with general firing times to modeling of a fault tolerant system and the use of discrete-event simulation methods for stochastic Petri nets to study the behavior of the system. The stochastic Petri net model incorporates factors that compose the system as well as those that accompany it, including RAS characteristics of products, personnel arrangements, and system management. By modeling the behavioral aspect of each factor, it is possible to diagnose a fault tolerant system quantitatively on the basis of customer impact.

  • Timing Verification of Logic Circuits with Combined Delay Model

    Shinji KIMURA  Shigemi KASHIMA  Hiromasa HANEDA  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1230-1238

    The paper proposes a combined delay model to manipulate the variance of the delay time of logic elements and a new timing verification method based on the theory of regular expressions. With the delay time of logic elements such as TTL SN7400, the minimum delay time (dm), the maximum delay time (dM), and the typical delay time are specified in the manual, and the delay time of an element is one in the interval between dm and dM. Here we assume a discrete time, and we manipulate the variance of the delay time as a set of output strings corresponding to each delay time. We call the model as the combined delay model. Since many output strings are generated with a single input string, the usual timing simulation method cannot be applied. We propose a timing verification method using a behavior extraction method of logic circuits with respect to a time string set: with respect to the specified input set, the method extracts the output string set of each element in the circuit. We devised (1) a mechanism to keep the correspondence between a primary input string and an output string with respect to the primary input string, (2) a mechanism to manipulate the nondeterminism included in the combined delay model, and (3) an event-driven like data compaction method in representing finite automata. We focused on the hazard detection problem and the verification of asynchronous circuits, and show the effectiveness of our method with medium sized circuit with 100 elements or so. The method includes the state explosion, but the data compaction method and the extraction for only the specified input set are useful to control the state explosion.

  • An Application of Air-Bridge Metal Interconnections to High Speed GaAs LSI's

    Minoru NODA  Hiroshi MATSUOKA  Norio HIGASHISAKA  Masaaki SHIMADA  Hiroshi MAKINO  Shuichi MATSUE  Yasuo MITSUI  Kazuo NISHITANI  Akiharu TADA  

     
    PAPER

      Vol:
    E75-C No:10
      Page(s):
    1146-1153

    Air-bridge metal interconnection technology is used for upper level power supply line interconnections in GaAs LSI's to reduce the signal propagation delay time. This technology reduces both parasitic capacitance between the signal line and the power supply line, and propagation delay in the signal line to about 10% and about 50%, respectively, compared to conventional 3-level interconnections without air-bridges. Under standard load conditions (FI=FO=2, length of load line=2 mm), the air-bridge technique leads to gate propagation delays which are about 60% of those in conventional interconnections. We fabricated 2.1-k gate Gate Arrays and 4-kb SRAM's using the air-bridge structure to interconnect power supply lines. For a Gate Array with 0.7 µm gate Buried P-layer Lightly Doped Drain (BPLDD) FET's, the typical gate propagation delay under standard load conditions was about 110 ps with a dissipation power of 1.4 mW/gate. SRAM's with 05 µm gate BPLDD's had typical access time (tacc) of 1.5 ns with a dissipation power of 700 mW/chip.

  • Formal Design Verification of Sequential Machines Based on Symbolic Model Checking for Branching Time Regular Temporal Logic

    Kiyoharu HAMAGUCHI  Hiromi HIRAISHI  Shuzo YAJIMA  

     
    PAPER

      Vol:
    E75-A No:10
      Page(s):
    1220-1229

    Recently, Burch et al. proposed symbolic model checking method to verify sequential machines formally. The method, which is based on logic function manipulation using binary decision diagram, can handle large sequential machines that cannot be handled by the conventional techniques. The expressive power of Computational Tree Logic (CTL), which was used by Burch et al., is not very powerful, for example, CTL cannot describe repetition of events. This papers shows an extension of the symbolic model checking algorithm to Branching time regular temporal logic (BRTL), which has been proposed by the authors as an improvement of CTL in terms of expressive power. The implemented verifier based on the proposed algorithm could verify behaviors of a microprocessor composed of approximately 1,600 gates and 68 flipflops.

30361-30380hit(30728hit)