The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

1781-1800hit(22683hit)

  • On Irreducibility of the Stream Version of Asymmetric Binary Systems

    Hiroshi FUJISAKI  

     
    PAPER-Information Theory

      Vol:
    E103-A No:5
      Page(s):
    757-768

    The interval in ℕ composed of finite states of the stream version of asymmetric binary systems (ABS) is irreducible if it admits an irreducible finite-state Markov chain. We say that the stream version of ABS is irreducible if its interval is irreducible. Duda gave a necessary condition for the interval to be irreducible. For a probability vector (p,1-p), we assume that p is irrational. Then, we give a necessary and sufficient condition for the interval to be irreducible. The obtained conditions imply that, for a sufficiently small ε, if p∈(1/2,1/2+ε), then the stream version of ABS could not be practically irreducible.

  • Multicast UE Selection for Efficient D2D Content Delivery Based on Social Networks

    Yanli XU  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E103-A No:5
      Page(s):
    802-805

    Device-to-device (D2D) content delivery reduces the energy consumption of frequent content retrieval in future content-centric cellular networks based on proximal content delivery. Compared with unicast, multicast may be more efficient since it serves the content requests of multiple users simultaneously. The serving efficiency mainly depends on the selection of multicast transmitter, which has not been well addressed. In this letter, we consider the match degree between the multicast content of transmitter and the required content of receiver based on social relationship between transceivers. By integrating the effects of communication environments and match degree into the selection procedure, a multicast UE selection scheme is proposed to improve the number of benefited receivers from D2D multicast. Simulation results show that the proposed scheme can efficiently improve the performance of D2D multicast content delivery under different communication environments.

  • Successive Interference Cancellation of ICA-Aided SDMA for GFSK Signaling in BLE Systems

    Masahiro TAKIGAWA  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/11/12
      Vol:
    E103-B No:5
      Page(s):
    495-503

    This paper proposes a successive interference cancellation (SIC) of independent component analysis (ICA) aided spatial division multiple access (SDMA) for Gaussian filtered frequency shift keying (GFSK) in Bluetooth low energy (BLE) systems. The typical SDMA scheme requires estimations of channel state information (CSI) using orthogonal pilot sequences. However, the orthogonal pilot is not embedded in the BLE packet. This fact motivates us to add ICA detector into BLE systems. In this paper, focusing on the covariance matrix of ICA outputs, SIC can be applied with Cholesky decomposition. Then, in order to address the phase ambiguity problems created by the ICA process, we propose a differential detection scheme based on the MAP algorithm. In practical scenarios, it is subject to carrier frequency offset (CFO) as well as symbol timing offset (STO) induced by the hardware impairments present in the BLE peripherals. The packet error rate (PER) performance is evaluated by computer simulations when BLE peripherals simultaneously communicate in the presence of CFO and STO.

  • Niobium-Based Kinetic Inductance Detectors for High-Energy Applications Open Access

    Masato NARUSE  Masahiro KUWATA  Tomohiko ANDO  Yuki WAGA  Tohru TAINO  Hiroaki MYOREN  

     
    INVITED PAPER-Superconducting Electronics

      Vol:
    E103-C No:5
      Page(s):
    204-211

    A lumped element kinetic inductance detector (LeKID) relying on a superconducting resonator is a promising candidate for sensing high energy particles such as neutrinos, X-rays, gamma-rays, alpha particles, and the particles found in the dark matter owing to its large-format capability and high sensitivity. To develop a high energy camera, we formulated design rules based on the experimental results from niobium (Nb)-based LeKIDs at 1 K irradiated with alpha-particles of 5.49 MeV. We defined the design rules using the electromagnetic simulations for minimizing the crosstalk. The neighboring pixels were fixed at 150 µm with a frequency separation of 250 MHz from each other to reduce the crosstalk signal as low as the amplifier-limited noise level. We examined the characteristics of the Nb-based resonators, where the signal decay time was controlled in the range of 0.5-50 µs by changing the designed quality factor of the detectors. The amplifier noise was observed to restrict the performance of our device, as expected. We improved the energy resolution by reducing the filling factor of inductor lines. The best energy resolution of 26 for the alpha particle of 5.49 MeV was observed in our device.

  • Development and Evaluation of Superconducting Nanowire Single-Photon Detectors for 900-1100 nm Photon Detection

    Fumihiro CHINA  Shigehito MIKI  Masahiro YABUNO  Taro YAMASHITA  Hirotaka TERAI  

     
    BRIEF PAPER-Superconducting Electronics

      Vol:
    E103-C No:5
      Page(s):
    212-215

    Superconducting nanowire single-photon detectors(SSPDs or SNSPDs) can detect single photons in a wide spectrum range from ultraviolet to mid-infrared wavelengths. We developed SSPDs for the light wavelength of 900-1100 nm, where it is difficult to achieve high detection efficiency by either Si or InGaAs avalanche photodiodes. We designed and fabricated the SSPD with non-periodic dielectric multilayers (DMLs) composed of SiO2 and TiO2 to enhance the optical absorptance in the wavelength range of 900-1100 nm. We measured the detection efficiency (DE) in the wavelength range of 800-1360 nm using a supercontinuum light source and found that the wavelength dependence of DE was in good agreement with the simulated spectrum of the optical absorptance of the nanowire device on the designed DML. The highest system DE was 81.0% for the wavelength of 980 nm.

  • Broadband RF Power Amplifier with Combination of Large Signal X-Parameter and Real Frequency Techniques

    Ragavan KRISHNAMOORTHY  Narendra KUMAR  Andrei GREBENNIKOV  Binboga Siddik YARMAN  Harikrishnan RAMIAH  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2019/11/27
      Vol:
    E103-C No:5
      Page(s):
    225-230

    A new design approach of broadband RF power amplifier (PA) is introduced in this work with combination of large signal X-parameter and Real-Frequency Technique (RFT). A theoretical analysis of large signal X-parameter is revisited, and a simplification method is introduced to determine the optimum large signal impedances of a Gallium Nitride HEMT (GaN HEMT) device. With the optimum impedance extraction over the wide frequency range (0.3 to 2.0 GHz), a wideband matching network is constructed employing RFT and the final design is implemented with practical mixed-lumped elements. The prototype broadband RF PA demonstrates an output power of 40 dBm. The average drain efficiency of the PA is found to be more than 60%; while exhibiting acceptable flat gain performance (12±0.25 dB) over the frequency band of (0.3-2.0 GHz). The PA designed using the proposed approach yields in small form factor and relatively lower production cost over those of similar PAs designed with the classical methods. It is expected that the newly proposed design method will be utilized to construct power amplifiers for radio communications applications.

  • Implementation of a 16-Phase 8-Branch Charge Pump with Advanced Charge Recycling Strategy

    Hui PENG  Pieter BAUWENS  Herbert De PAUW  Jan DOUTRELOIGNE  

     
    PAPER-Electronic Circuits

      Pubricized:
    2019/11/29
      Vol:
    E103-C No:5
      Page(s):
    231-237

    A fully integrated 16-phase 8-branch Dickson charge pump is proposed and implemented to decrease the power dissipation due to parasitic capacitance at the bottom plate of the boost capacitor. By using the charge recycling concept, 87% of the power consumption related to parasitic capacitance is saved. In a 4-stage version of this charge pump, a maximum power efficiency of 41% is achieved at 35µA output current and 11V output voltage from a 3.3V supply voltage. The proposed multi-branch charge pump can also reach a very low output voltage ripple of only 0.146% at a load resistance of 1MΩ, which is attributed to the fact that the 8-branch charge pump can transfer charges to the output node eight times consecutively during one clock period. In addition, a high voltage gain of 4.6 is achieved in the 4-stage charge pump at light load conditions. The total chip area is 0.57mm2 in a 0.35µm HV CMOS technology.

  • On the Design of a Happiness Cups System: A Smart Device for Health Care and Happiness Improvement Using LSTM

    Che-Wen CHEN  Shih-Pang TSENG  Pin-Chieh CHEN  Jhing-Fa WANG  

     
    PAPER

      Pubricized:
    2020/01/28
      Vol:
    E103-D No:5
      Page(s):
    916-927

    In this paper, a Happiness Cups (H-cups) system is proposed to bi-directionally convey the holding-cup motions of paired cups between two remote users. To achieve this goal, the H-cups system uses three important components. Firstly, paired cups are embedded with accelerometers and gyro sensors to transmit the three-dimensional acceleration and angular signals to a motion recognizer application. This application is designed on an Android phone. The sensors then receive the remotely recognized motions and flash a specific color on the local cup's RGB-LED via Bluetooth. Secondly, the application considers holding-cup motion recognition from the cup based on long short-term memory (LSTM) and sends the local recognized motion through an intermediate server to transmit to the remote paired cup via the internet. Finally, an intermediate server is established and used to exchange and forward the recognized holding-cup motions between two paired cups, in which five holding-cup motions, including drinking, horizontal shaking, vertical shaking, swaying and raising toasts are proposed and recognized by LSTM. The experimental results indicate that the recognition accuracy of the holding-cup motion can reach 97.3% when using our method.

  • A Retrieval Method for 3D CAD Assembly Models Using 3D Radon Transform and Spherical Harmonic Transform

    Kaoru KATAYAMA  Takashi HIRASHIMA  

     
    PAPER

      Pubricized:
    2020/02/20
      Vol:
    E103-D No:5
      Page(s):
    992-1001

    We present a retrieval method for 3D CAD assemblies consisted of multiple components. The proposed method distinguishes not only shapes of 3D CAD assemblies but also layouts of their components. Similarity between two assemblies is computed from feature quantities of the components constituting the assemblies. In order to make the similarity robust to translation and rotation of an assembly in 3D space, we use the 3D Radon transform and the spherical harmonic transform. We show that this method has better retrieval precision and efficiency than targets for comparison by experimental evaluation.

  • A Power Analysis Attack Countermeasure Based on Random Data Path Execution For CGRA

    Wei GE  Shenghua CHEN  Benyu LIU  Min ZHU  Bo LIU  

     
    PAPER-Computer System

      Pubricized:
    2020/02/10
      Vol:
    E103-D No:5
      Page(s):
    1013-1022

    Side-channel Attack, such as simple power analysis and differential power analysis (DPA), is an efficient method to gather the key, which challenges the security of crypto chips. Side-channel Attack logs the power trace of the crypto chip and speculates the key by statistical analysis. To reduce the threat of power analysis attack, an innovative method based on random execution and register randomization is proposed in this paper. In order to enhance ability against DPA, the method disorders the correspondence between power trace and operands by scrambling the data execution sequence randomly and dynamically and randomize the data operation path to randomize the registers that store intermediate data. Experiments and verification are done on the Sakura-G FPGA platform. The results show that the key is not revealed after even 2 million power traces by adopting the proposed method and only 7.23% slices overhead and 3.4% throughput rate cost is introduced. Compared to unprotected chip, it increases more than 4000× measure to disclosure.

  • Multimodal Analytics to Understand Self-Regulation Process of Cognitive and Behavioral Strategies in Real-World Learning

    Masaya OKADA  Yasutaka KUROKI  Masahiro TADA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/02/05
      Vol:
    E103-D No:5
      Page(s):
    1039-1054

    Recent studies suggest that learning “how to learn” is important because learners must be self-regulated to take more responsibility for their own learning processes, meta-cognitive control, and other generative learning thoughts and behaviors. The mechanism that enables a learner to self-regulate his/her learning strategies has been actively studied in classroom settings, but has seldom been studied in the area of real-world learning in out-of-school settings (e.g., environmental learning in nature). A feature of real-world learning is that a learner's cognition of the world is updated by his/her behavior to investigate the world, and vice versa. This paper models the mechanism of real-world learning for executing and self-regulating a learner's cognitive and behavioral strategies to self-organize his/her internal knowledge space. Furthermore, this paper proposes multimodal analytics to integrate heterogeneous data resources of the cognitive and behavioral features of real-world learning, to structure and archive the time series of strategies occurring through learner-environment interactions, and to assess how learning should be self-regulated for better understanding of the world. Our analysis showed that (1) intellectual achievements are built by self-regulating learning to chain the execution of cognitive and behavioral strategies, and (2) a clue to predict learning outcomes in the world is analyzing the quantity and frequency of strategies that a learner uses and self-regulates. Assessment based on these findings can encourage a learner to reflect and improve his/her way of learning in the world.

  • Air Quality Index Forecasting via Deep Dictionary Learning

    Bin CHEN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2020/02/20
      Vol:
    E103-D No:5
      Page(s):
    1118-1125

    Air quality index (AQI) is a non-dimensional index for the description of air quality, and is widely used in air quality management schemes. A novel method for Air Quality Index Forecasting based on Deep Dictionary Learning (AQIF-DDL) and machine vision is proposed in this paper. A sky image is used as the input of the method, and the output is the forecasted AQI value. The deep dictionary learning is employed to automatically extract the sky image features and achieve the AQI forecasting. The idea of learning deeper dictionary levels stemmed from the deep learning is also included to increase the forecasting accuracy and stability. The proposed AQIF-DDL is compared with other deep learning based methods, such as deep belief network, stacked autoencoder and convolutional neural network. The experimental results indicate that the proposed method leads to good performance on AQI forecasting.

  • Enhanced Secure Transmission for Indoor Visible Light Communications

    Sheng-Hong LIN  Jin-Yuan WANG  Ying XU  Jianxin DAI  

     
    LETTER-Information Network

      Pubricized:
    2020/02/25
      Vol:
    E103-D No:5
      Page(s):
    1181-1184

    This letter investigates the secure transmission improvement scheme for indoor visible light communications (VLC) by using the protected zone. Firstly, the system model is established. For the input signal, the non-negativity and the dimmable average optical intensity constraint are considered. Based on the system model, the secrecy capacity for VLC without considering the protected zone is obtained. After that, the protected zone is determined, and the construction of the protected zone is also provided. Finally, the secrecy capacity for VLC with the protected zone is derived. Numerical results show that the secure performance of VLC improves dramatically by employing the protected zone.

  • Loss-Driven Channel Pruning of Convolutional Neural Networks

    Xin LONG  Xiangrong ZENG  Chen CHEN  Huaxin XIAO  Maojun ZHANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/02/17
      Vol:
    E103-D No:5
      Page(s):
    1190-1194

    The increase in computation cost and storage of convolutional neural networks (CNNs) severely hinders their applications on limited-resources devices in recent years. As a result, there is impending necessity to accelerate the networks by certain methods. In this paper, we propose a loss-driven method to prune redundant channels of CNNs. It identifies unimportant channels by using Taylor expansion technique regarding to scaling and shifting factors, and prunes those channels by fixed percentile threshold. By doing so, we obtain a compact network with less parameters and FLOPs consumption. In experimental section, we evaluate the proposed method in CIFAR datasets with several popular networks, including VGG-19, DenseNet-40 and ResNet-164, and experimental results demonstrate the proposed method is able to prune over 70% channels and parameters with no performance loss. Moreover, iterative pruning could be used to obtain more compact network.

  • Estimating Knowledge Category Coverage by Courses Based on Centrality in Taxonomy

    Yiling DAI  Masatoshi YOSHIKAWA  Yasuhito ASANO  

     
    PAPER

      Pubricized:
    2019/12/26
      Vol:
    E103-D No:5
      Page(s):
    928-938

    The proliferation of Massive Open Online Courses has made it a challenge for the user to select a proper course. We assume a situation in which the user has targeted on the knowledge defined by some knowledge categories. Then, knowing how much of the knowledge in the category is covered by the courses will be helpful in the course selection. In this study, we define a concept of knowledge category coverage and aim to estimate it in a semi-automatic manner. We first model the knowledge category and the course as a set of concepts, and then utilize a taxonomy and the idea of centrality to differentiate the importance of concepts. Finally, we obtain the coverage value by calculating how much of the concepts required in a knowledge category is also taught in a course. Compared with treating the concepts uniformly important, we found that our proposed method can effectively generate closer coverage values to the ground truth assigned by domain experts.

  • Iterative Cross-Lingual Entity Alignment Based on TransC

    Shize KANG  Lixin JI  Zhenglian LI  Xindi HAO  Yuehang DING  

     
    LETTER

      Pubricized:
    2020/01/09
      Vol:
    E103-D No:5
      Page(s):
    1002-1005

    The goal of cross-lingual entity alignment is to match entities from knowledge graph of different languages that represent the same object in the real world. Knowledge graphs of different languages can share the same ontology which we guess may be useful for entity alignment. To verify this idea, we propose a novel embedding model based on TransC. This model first adopts TransC and parameter sharing model to map all the entities and relations in knowledge graphs to a shared low-dimensional semantic space based on a set of aligned entities. Then, the model iteratively uses reinitialization and soft alignment strategy to perform entity alignment. The experimental results show that, compared with the benchmark algorithms, the proposed model can effectively fuse ontology information and achieve relatively better results.

  • Pay the Piper: DDoS Mitigation Technique to Deter Financially-Motivated Attackers Open Access

    Takayuki SASAKI  Carlos HERNANDEZ GAÑÁN  Katsunari YOSHIOKA  Michel VAN EETEN  Tsutomu MATSUMOTO  

     
    PAPER

      Pubricized:
    2019/11/12
      Vol:
    E103-B No:4
      Page(s):
    389-404

    Distributed Denial of Service attacks against the application layer (L7 DDoS) are among the most difficult attacks to defend against because they mimic normal user behavior. Some mitigation techniques against L7 DDoS, e.g., IP blacklisting and load balancing using a content delivery network, have been proposed; unfortunately, these are symptomatic treatments rather than fundamental solutions. In this paper, we propose a novel technique to disincentivize attackers from launching a DDoS attack by increasing attack costs. Assuming financially motivated attackers seeking to gain profit via DDoS attacks, their primary goal is to maximize revenue. On the basis of this assumption, we also propose a mitigation solution that requires mining cryptocurrencies to access servers. To perform a DDoS attack, attackers must mine cryptocurrency as a proof-of-work (PoW), and the victims then obtain a solution to the PoW. Thus, relative to attackers, the attack cost increases, and, in terms of victims, the economic damage is compensated by the value of the mined coins. On the basis of this model, we evaluate attacker strategies in a game theory manner and demonstrate that the proposed solution provides only negative economic benefits to attackers. Moreover, we implement a prototype to evaluate performance, and we show that this prototype demonstrates practical performance.

  • A 28-GHz-Band Highly Linear Stacked-FET Power Amplifier IC with High Back-Off PAE in 56-nm SOI CMOS

    Cuilin CHEN  Tsuyoshi SUGIURA  Toshihiko YOSHIMASU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E103-C No:4
      Page(s):
    153-160

    This paper presents a 28-GHz-band highly linear stacked-FET power amplifier (PA) IC. A 4-stacked-FET structure is employed for high output power considering the low breakdown voltage of scaled MOSFET transistors. A novel adaptive bias circuit is proposed to dynamically control the gate-to-source bias voltage for amplification MOSFETs. The novel adaptive bias allows the PA to attain high linearity with high back-off efficiency. In addition, the third-order intermodulation distortion (IM3) is improved by a multi-cascode structure. The PA IC is designed, fabricated and fully tested in 56-nm SOI CMOS technology. At a supply voltage of 4 V, the PA IC has achieved an output power of 20.0 dBm with a PAE as high as 38.1% at the 1-dB gain compression point (P1dB). Moreover, PAEs at 3-dB and 6-dB back-off from P1dB are 36.2% and 28.7%, respectively. The PA IC exhibits an output third-order intercept point (OIP3) of 25.0 dBm.

  • Insertion/Deletion/Substitution Error Correction by a Modified Successive Cancellation Decoding of Polar Code Open Access

    Hikari KOREMURA  Haruhiko KANEKO  

     
    PAPER-Coding Theory

      Vol:
    E103-A No:4
      Page(s):
    695-703

    This paper presents a successive cancellation (SC) decoding of polar codes modified for insertion/deletion/substitution (IDS) error channels, in which insertions and deletions are described by drift values. The recursive calculation of the original SC decoding is modified to include the drift values as stochastic variables. The computational complexity of the modified SC decoding is O (D3) with respect to the maximum drift value D, and O (N log N) with respect to the code length N. The symmetric capacity of polar bit channel is estimated by computer simulations, and frozen bits are determined according to the estimated symmetric capacity. Simulation results show that the decoded error rate of polar code with the modified SC list decoding is lower than that of existing IDS error correction codes, such as marker-based code and spatially-coupled code.

  • Switched Pinning Control for Merging and Splitting Maneuvers of Vehicle Platoons Open Access

    Takuma WAKASA  Yoshiki NAGATANI  Kenji SAWADA  Seiichi SHIN  

     
    PAPER-Systems and Control

      Vol:
    E103-A No:4
      Page(s):
    657-667

    This paper considers a velocity control problem for merging and splitting maneuvers of vehicle platoons. In this paper, an external device sends velocity commands to some vehicles in the platoon, and the others adjust their velocities autonomously. The former is pinning control, and the latter is consensus control in multi-agent control. We propose a switched pinning control algorithm. Our algorithm consists of three sub-methods. The first is an optimal switching method of pinning agents based on an MLD (Mixed Logical Dynamical) system model and MPC (Model Predictive Control). The second is a representation method for dynamical platoon formation with merging and splitting maneuver. The platoon formation follows the positional relation between vehicles or the formation demand from the external device. The third is a switching reduction method by setting a cost function that penalizes the switching of the pinning agents in the steady-state. Our proposed algorithm enables us to improve the consensus speed. Moreover, our algorithm can regroup the platoons to the arbitrary platoons and control the velocities of the multiple vehicle platoons to each target value.

1781-1800hit(22683hit)