The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Z(5900hit)

5261-5280hit(5900hit)

  • New Neural Network Based Nonlinear and Multipath Distortion Equalizer for FTTA Systems

    Jun IDO  Minoru OKADA  Shozo KOMAKI  

     
    PAPER

      Vol:
    E80-B No:8
      Page(s):
    1138-1144

    A new Neural Network Equalizer (NNE), employing multilayer feedforward neural network, is proposed as a compensation method for nonlinear and multipath distortion that arises from FTTA (Fiber To The Air) system. If a signal in a channel is affected by nonlinear distortion, the conventional Decision Feedback Equalizer (DFE) finds difficulty in perfect compensation of it. To compensate for nonlinear distortion as well as multipath distortion, an equalizer, employing neural network, is investigated. A new neural network equalizer, yielding a cubic function as unit output function, is proposed in order to compensate the nonlinear distortion effectively. We also propose an initial weights of neural network for preventing from local minimum. Computer simulation results show that the compensation performance of the new NNE is superior to the conventional DFE and the conventional NNE.

  • A Range-Finder-Based Displacement Meter for Measuring Tooth Mobility in 6 Degrees of Freedom: Measurement Principle and Error Propagation Analysis

    Toyohiko HAYASHI  Kazuyuki KAZAMA  Takahiro ABE  Michio MIYAKAWA  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E80-D No:8
      Page(s):
    808-816

    Efforts have been cumulated to measure tooth mobility, in order to accurately characterize the mechanical features of periodontal tissues. This paper provides a totally new technique for accomplishing the task of measuring tooth displacement in 6 degrees of freedom, using a range finder. Its intraoral equipment comprises two elements, a moving polyhedron and a referential device, both of which are secured to a subject tooth and several other teeth splinted together. The polyhedron has 6 planar surfaces, each oriented in a distinctly different direction, with each plane facing an opposing range finder mounted on the referential part. If the sensor geometry is provided, the position and orientation of the movable part, vis-a-vis the reference, can be determined theoretically from the distances between all the range finders and their opposing surfaces. This computation was mathematically formulated as a non-linear optimization problem, the numerical solution of which can be obtained iteratively. Its error-propagation formula was also provided as a linear approximation.

  • A Single-Layer Linear-to-Circular Polarization Converter for a Narrow-Wall Slotted Waveguide Array

    Kyeong-Sik MIN  Jiro HIROKAWA  Kimio SAKURAI  Makoto ANDO  Naohisa GOTO  Yasuhiko HARA  

     
    PAPER-Antennas and Propagation

      Vol:
    E80-B No:8
      Page(s):
    1264-1272

    This paper describes the characteristics of a one dimensional narrow-wall slotted waveguide array with a single-layer linear-to-circular polarization converter consisting of a dipole array. An external boundary value problem of one slot and three dipoles, which approximates the mutual coupling between the dipole array and an edge slot extending over three faces of a rectangular waveguide, is formulated and analyzed by the method of moments; design of polarization conversion is conducted for this model as a unit element. If every unit element has perfect circular polarization, grating lobes appear in the array pattern due to the alternating slot angle: these are suppressed in this paper by changing the dipole angle and degrading the axial ratio of the unit element. The validity of the design is confirmed by the measurements. The dipole array has negligible effects upon slot impedance; the polarization conversion for existing narrow-wall slotted arrays is realized by add-on dipole array.

  • Performance Evaluation of DS/CDMA Hybrid Acquisition in Multipath Rayleigh Fading Channel

    Bub-Joo KANG  

     
    PAPER-Radio Communication

      Vol:
    E80-B No:8
      Page(s):
    1255-1263

    In this paper, the evaluation of a hybrid acquisition performance has been considered for the pilot signal in direct sequence code division multiple access (DS/CDMA) forward link. The hybrid acquisition is introduced by the combination of two schemes, parallel and serial acquisitions. The mean acquisition time of the hybrid acquisition scheme is derived to consider both case 1 (the correct code-phase offsets ae included in one subset) and case 2 (the correct code-phase offsets exist at the boundary of two subsets), which are caused by the distribution of the correct code-phase offsets between two subsets. Detection, false alarm, and miss probabilities are derived for the cases of multiple correct code-phase offsets and multipath Rayleigh fading channel. Results are provided for the acquisition performance with respect to system design parameters such as postdetection integration length in the search and verification modes, subset size, and number of I/Q noncoherent correlators. Also, comparision between hybrid acquisition and parallel acquisition under the same hardware complexity is provided in terms of the minimum mean acquisition time.

  • LMS-Based Algorithms with Multi-Band Decomposition of the Estimation Error Applied to System Identification

    Fernando Gil V. RESENDE,Jr  Paulo S.R. DINIZ  Keiichi TOKUDA  Mineo KANEKO  Akinori NISHIHARA  

     
    PAPER

      Vol:
    E80-A No:8
      Page(s):
    1376-1383

    A new cost function based on multi-band decomposition of the estimation error and application of a different step-size for each band is used in connection with the least-mean-square criterion to improve the fidelity of estimates as compared to those obtained with conventional least-mean-square adaptive algorithms. The basic new idea is to trade off time and frequency resolutions of the adaptive algorithm along the frequency domain by using different step-sizes in the analysis of distinct frequencies in accordance with the frequency-localized statistical behavior of the imput signal. The mathematical background for a stochatic approach to the multi-band decomposition-based scheme is presented and algorithms with fixed and variable step-sizes are derived. Computer experiments compare the performance of multiband and conventional least-mean-square methods when applied to system identification.

  • Model for Estimating Bending Loss in the 1.5 µm Wavelength Region

    Kyozo TSUJIKAWA  Masaharu OHASHI  Osamu KAWATA  

     
    LETTER-Opto-Electronics

      Vol:
    E80-C No:7
      Page(s):
    1067-1069

    A model for estimating the bending loss of 1.3 µm zero-dispersion single-mode fibers at 1.58 µm from the value at 1.55 µm is investigated experimentally and theoretically. An approximated equation for estimating the bending loss ratio of 1.58 µm to 1.55 µm is proposed, which provides good agreement with the experimental results.

  • A Memory-Based Parallel Processor for Vector Quantization: FMPP-VQ

    Kazutoshi KOBAYASHI  Masayoshi KINOSHITA  Hidetoshi ONODERA  Keikichi TAMARU  

     
    PAPER-Multi Processors

      Vol:
    E80-C No:7
      Page(s):
    970-975

    We propose a memory-based processor called a Functional Memory Type Parallel Processor for vector quantization (FMPP-VQ). The FMPP-VQ is intended for low bit-rate image compression using vector quantization. It accelerates the nearest neighbor search on vector quantization. In the nearest neighbor search, we look for a vector nearest to an input one among a large number of code vectors. The FMPP-VQ has as many PEs (processing elements, also called "blocks") as code vectors. Thus distances between an input vector and code vectors are computed simultaneously in every PE. The minimum value of all the distances is searched in parallel, as in conventional CAMs. The computation time does not depend on the number of code vectors. In this paper, we explain the detail of the architecture of the FMPP-VQ, its performance and its layout density. We designed and fabricated an LSI including four PEs. The test results and performance estimation of the LSI are also reported.

  • Piezoelectric Transformer Converter with PWM Control

    Toshiyuki ZAITSU  Tamotsu NINOMIYA  Masahito SHOYAMA  

     
    PAPER-Power Supply

      Vol:
    E80-B No:7
      Page(s):
    1035-1044

    A piezoelectric transformer (PT) converter with PWM control is presented. The combination of an active-clamp circuit and a resonant circuit makes it possible to control the output voltage of the PT converter with PWM at a constant switching frequency. The PT converter circuit is evaluated using an AC analysis, and a design procedure is presented. The PT converter implemented on a printed circuit board is experimentally evaluated and a good controllability is successfully achieved.

  • A New High Gain Circularly Polarized Microstrip Antenna with Diagonal Short

    Hiroyuki OHMINE  Hitoshi MIZUTAMARI  Yonehiko SUNAHARA  

     
    PAPER-Antennas and Propagation

      Vol:
    E80-B No:7
      Page(s):
    1090-1097

    A new configuration of high gain circularly polarized microstrip antenna with a diagonal short and its analysis using boundary element method with a radiation load are presented. The center of a radiating patch is shorted with a 45-degree diagonal offset for not only obtaining a high gain but exciting a circular polarization. This configuration leads to achieving high gain with keeping a very low profile configuration. Boundary element method with radiation load which takes into account the effect of radiation loss is employed to analyze this complicated configuration. The radiation load, which is very important when boundary element method is applied to antenna analyses, can be obtained from radiation admittance using recurring technique, so that the accuracy of the antenna characteristic calculations can be improved. This antenna was designed and tested in the L-band and good characteristics, axial ratios and radiation patterns, have been verified.

  • Eliciting the Potential Functions of Single-Electron Circuits

    Masamichi AKAZAWA  Yoshihito AMEMIYA  

     
    INVITED PAPER

      Vol:
    E80-C No:7
      Page(s):
    849-858

    This paper describes a guiding principle for designing functional single-electron tunneling (SET) circuitsthat is a way to elicit the potential functions of a given SET circuit by using as a guiding tool the SET circuit stability diagram. A stability diagram is a map that depicts the stable regions of a SET circuit based on the circuit's variable coordinates. By scrutinizing the diagram, we can infer all the potential functions that can be obtained from a circuit configuration. As an example, we take up a well-known SET-inverter circuit and uncover its latent functions by studying the circuit configuration, based on its stability diagram. We can produce various functions, e.g., step-inverter, Schmidt-trigger, memory cell, literal, and stochastic-neuron functions. The last function makes good use of the inherent stochastic nature of single-electron tunneling, and can be applied to Boltzmann-machine neural network systems.

  • Analysis of a Coupled Chaotic System Containing Circuits with Different Oscillation Frequencies

    Tatsuki OKAMOTO  Yoshifumi NISHIO  Akio USHIDA  

     
    PAPER-Nonlinear Problems

      Vol:
    E80-A No:7
      Page(s):
    1324-1329

    In this study, we show how changing a frequency in one of N chaotic circuits coupled by a resistor effects our system by means of both circuit experiment and computer calculation. In these N chaotic circuits, N-1 circuits are completely identical, and the remaining one has altered the value of the oscillation frequency. It is found that for the case of N = 3 when a value of a coupling resistor is gradually increased, only one circuit with different frequency exhibits bifurcation phenomena including inverse period-doubling bifurcation, and for larger value of coupling resistor, the chaotic circuit with different frequency suddenly stops oscillating and the remaining two chaotic circuits exhibit completely anti-phase synchronization.

  • Hardware Framework for Accelerating the Execution Speed of a Genetic Algorithm

    Barry SHACKLEFORD  Etsuko OKUSHI  Mitsuhiro YASUDA  Hisao KOIZUMI  Katsuhiko SEO  Takashi IWAMOTO  

     
    PAPER-Multi Processors

      Vol:
    E80-C No:7
      Page(s):
    962-969

    Genetic algorithms were introduced by Holland in 1975 as a method of solving difficult optimization problems by means of simulated evolution. A major drawback of genetic algorithms is their slowness when emulated by software on conventional computers. Described is an adaptation of the original genetic algorithm that is advantageous to hardware implementation along with the architecture of a hardware framework that performs the functions of population storage, selection, crossover, mutation, fitness evaluation, and survival determination. Programming of the framework is illustrated with the set coverage problem that exhibits a 6,000 speed-up over software emulation on a 100 MHz workstation.

  • Novel Electronic Properties on Ferroelectric/ferromagnetic Heterostructures

    Hitoshi TABATA  Tomoji KAWAI  

     
    PAPER-Novel Concept Devices

      Vol:
    E80-C No:7
      Page(s):
    918-923

    We have constructed a new concept device with combination of ferroelectric and ferromagnetic materials by a laser ablation technique. An ideal hetero-epitaxy can be obtained owing to the similar crystal structure of perovskite type ferroelectric Pb (Zr, Ti) O3; (so called PZT) and ferromagnetic (La, Sr) MnO3. The ferromagnetic (La, Sr) MnO3 compounds are well known for their colossal magnetoresistance (CMR) properties. The CMR effect is strongly affected by the lattice stress. The PZT, on the other hand, is famous for its large piezoelectrics. We can introduce the lattice stress easily by applying voltage for the piezoelectric compounds. In the heterostructured ferromagnetic/ferroelectric devices, there are remarkable interesting phenomena. Electric properties of the ferromagnetic material can be controlled by piezoelectric effect via distortion of crystal structure.

  • Histogram Matching by Moment Normalization

    Wen-Hao WANG  Yung-Chang CHEN  

     
    LETTER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E80-D No:7
      Page(s):
    746-750

    A moment-based method is proposed to estimate the illumination change between two images containing affinetransformed objects. The change is linearly modeled with parameters to be estimated by histograms due to its invariance of translation, rotation, and scaling. The parameters can be correctly estimated for an appropriate illumination change by normalizing the moments of the histograms.

  • On Irregular Sampling in Wavelet Subspaces

    Wen CHEN  Shuichi ITOH  

     
    PAPER-General Fundamentals and Boundaries

      Vol:
    E80-A No:7
      Page(s):
    1299-1307

    The paper provides the algorithm to estimate the deviation bound admitting to recovering irregularly sampled signals in wavelet subspaces, which does not need the symmetricity sampling constraint of Paley-Wiener's and relaxes the deviation bounds in some wavelet subspaces. Meanwhile the method does not need the continuity and decay constraints imposed on scaling functions by Liu-Walter and Chen-Itoh-Shiki.

  • A Fast and Adaptive Imaging Algorithm for the Optical Array Imaging System

    Osamu IKEDA  

     
    PAPER-Digital Signal Processing

      Vol:
    E80-A No:6
      Page(s):
    1092-1098

    An optical array imaging system has been presented in previous articles. In this system, first, the object is illuminated with laser light sequentially from each of the array elements and the reflected field is detected as interferogram. The interferograms obtained are then spatially heterodyne-detected on a computer to extract the signal components, that is, array data. Then, the eigenvector of the largest eigenvalue is derived by applying the power method to the array data and it is beam-steered to get images of the object. The algorithm gives good images for most objects, but it fails to work for some objects. It was shown that using a subset of the array data may solve the problem, but that finding the corresponding optimum subaperture is quite time-consuming. In this paper, first, the integral equation describing the system is solved for a general class of object, to make clear the conditions for the eigenvector to form a sharp beam. Second, the imaging algorithm is sped up to a great degree by optimizing only the illuminating aperture in a coarse fashion. Third, the rate of convergence of the power method is adaptively estimated in the algorithm to make the eigenvector derivation reliable. Finally the improved algorithm is investigated using both computer-generated and experimentally obtained array data.

  • A Small-Sized 10 W Module for 1.5 GHz Portable DMCA Radios Using New Power Divider/Combiner

    Masahiro MAEDA  Morio NAKAMURA  Shigeru MORIMOTO  Hiroyuki MASATO  Yorito OTA  

     
    PAPER

      Vol:
    E80-C No:6
      Page(s):
    751-756

    A small-sized three-stage GaAs power module has been developed for portable digital radios using M-16QAM modulation. This module has exhibited typical P1dB of 10 W with PAE of 48% and a power gain of 35 dB at a low supply voltage of 6.5 V in 1.453-1.477 GHz band. The volume of the module is only 1.5 cc, which is one of the smallest value in 10 W class modules ever reported. In order to realize the reduced size and the high power performances simultaneously, the module has employed new power divider/combiner circuits with significant features of the reduced occupation area, the improved isolation properties and the function of second-harmonic control.

  • A Single/Multilevel Modulus Algorithm for Blind Equalization of QAM Signals

    Kil Nam OH  

     
    PAPER

      Vol:
    E80-A No:6
      Page(s):
    1033-1039

    A noble blind equalization algorithm (BEA) using a single/multilevel modulus is proposed. According to the residual intersymbol interference (ISI) level of the equalizer output, the new algorithm adopts relevantly a single modulus or a multilevel modulus to form its cost function. Moreover, since the proposed approach separates complex two-dimensional signal into in-phase and quadrature components, and forms the error signals for each component, it has inherently the capability of phase recovery. Hence, it improves the performances of steady-state and recovers the phase rotation without any degradation of transient property. Simulation results confirm the effectiveness of the new approach.

  • A Neuro-Based Optimization Algorithm for Three Dimensional Cylindric Puzzles

    Hiroyuki YAMAMOTO  Takeshi NAKAYAMA  Hiroshi NINOMIYA  Hideki ASAI  

     
    PAPER

      Vol:
    E80-A No:6
      Page(s):
    1049-1054

    This paper describes a neuro-based optimization algorithm for three dimensional (3-D) cylindric puzzles which are problems to arrange the irregular-shaped slices so that they perfectly fit into a fixed three dimensional cylindric shape. First, the idea to expand the 2-dimensional tiling technique to 3-dimensional puzzles is described. Next, to energy function with the fitting function of each polyomino is introduced, which is available for 3-D cylindric puzzles. Furthermore our algorithm is applied to several examples using the analog neural array. Finally, it is shown that our algorithm is useful for solving 3-D cylindric puzzles.

  • Network Design for Simultaneous Traffic Flow Requirements

    Yiu Kwok THAM  

     
    PAPER-Communication Networks and Services

      Vol:
    E80-B No:6
      Page(s):
    930-938

    We consider the problem of designing a physically diverse network that can support any two simultaneous node-to-node traffic flow requirements as called for by special events such as communication link failures or surges in network traffic. The design objective is to obtain a network with the minimum level of network capacity, yet robust enough to handle any two simultaneous traffic flow requirements between any nodes. To arrive at the minimum necessary network capacity,we introduce the concept of nodal requirement. Based on nodal requirements, we can build what may be called uniform protection subnetworks for equal nodal requirements. Successive uniform protection subnetworks can be built for incremental nodal requirements. This direct approach supersedes the extant work on building fully connected networks or loops from maximum spanning trees that can cope with only one traffic flow requirement. Our nodal requirements approach generalizes well to multiple simultaneous traffic flow requirements. Hub subnetworks are introduced to provide protection for networks with a unique node that has the largest nodal requirement. Further, a heuristic is considered and analyzed that assigns edge capacities of the protection network directly based on the largest two traffic flow requirements incident on the end nodes of an edge. The heuristic is attractive in being simple to implement.

5261-5280hit(5900hit)