The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] array(959hit)

321-340hit(959hit)

  • 3D-DCT Processor and Its FPGA Implementation

    Yuki IKEGAKI  Toshiaki MIYAZAKI  Stanislav G. SEDUKHIN  

     
    PAPER-Computer System

      Vol:
    E94-D No:7
      Page(s):
    1409-1418

    Conventional array processors randomly access input/coefficient data stored in memory many times during three-dimensional discrete cosine transform (3D-DCT) calculations. This causes a calculation bottleneck. In this paper, a 3D array processor dedicated to 3D-DCT is proposed. The array processor drastically reduces data swapping or replacement during the calculation and thus improves performance. The time complexity of the proposed NNN array processor is O(N) for an N3-size input data cube, and that of the 3D-DCT sequential calculation is O(N4). A specific I/O architecture, throughput-improved architectures, and more scalable architecture are also discussed in terms of practical implementation. Experimental results of implementation on FPGA (field-programmable gate array) suggest that our architecture provides good performance for real-time 3D-DCT calculations.

  • Numerical Analysis on MIMO Performance of the Modulated Scattering Antenna Array in Indoor Environment

    Lin WANG  Qiang CHEN  Qiaowei YUAN  Kunio SAWAYA  

     
    LETTER-Antennas and Propagation

      Vol:
    E94-B No:6
      Page(s):
    1752-1756

    The multiple-input multiple-output (MIMO) performance of the modulated scattering antenna array (MSAA) is analyzed numerically for the first time in indoor environment based on an approach to hybridization of the Volterra series method and method of moments (MoM) in this letter. Mutual coupling effect between the Modulated scattering element (MSE) and the normal antenna element is also considered in this analysis. It is found that MIMO performance of the MSAA is improved with reducing the array spacing of the MSAA in 4 different indoor receiving areas. At the same time, the simulated results of the MSAA are compared with those of the dipole antenna array at the same condition.

  • A New Blind Beamforming and Hop-Timing Detection for FH Communications

    Abdul Malik NAZARI  Yukihiro KAMIYA  Ko SHOJIMA  Kenta UMEBAYASHI  Yasuo SUZUKI  

     
    PAPER-Adaptive Array Antennas

      Vol:
    E94-B No:5
      Page(s):
    1234-1242

    Hop-timing detection is of extreme importance for the reception of frequency hopping (FH) signals. Any error in the hop-timing detection has a deleterious effect on the performance of the receiver in frequency hopping (FH) communication systems. However, it is not easy to detect the hop-timing under low signal to noise power ratio (SNR) environments. Adaptive array antennas (AAA) have been expected to improve the performance of FH communication systems by beamforming for the direction of arrival of the desired signal. Since the conventional AAA exploits at least the coarse synchronization for dehopping of FH signals before achieving the beamforming, any fault in the hop-timing detection causes the deterioration of the performance of AAA. Using AAA based on the constant modulus algorithm (CMA), this paper proposes a new method for blind beamforming and hop-timing detection for FH signals. The proposed method exploits both the spatial and temporal characteristics of the received signal to accomplish the beamforming and detect the hop-timing without knowing any a priori information such as fine/coarse time synchronization and training signal. The performance verifications of the proposed method based on pertinent simulations are presented.

  • Novel Scheme for Blind Multiuser Detection Using CMA Adaptive Array

    Dalin ZHANG  Mitoshi FUJIMOTO  Toshikazu HORI  

     
    PAPER-Adaptive Array Antennas

      Vol:
    E94-B No:5
      Page(s):
    1225-1233

    This paper proposes a novel blind multiuser detection scheme using CMA (Constant Modulus Algorithm) adaptive array. In the proposed scheme, the received signal is processed in two steps. In the primary step, only one user is captured by the CMA adaptive array, and at the same time, the other users' directions of arrival (DOA) are estimated. In the secondary step, initial weight vectors are set based on the estimated DOAs, and it processes with CMAs again to capture the other users in parallel. Thus, all the users are detected exactly and recovered separately. The Least-squares CMA is applied as an optimization algorithm to improve the performance of the proposed scheme, and the performances using the proposed scheme with linear arrays and circular arrays are discussed in detail. Simulation results are presented to verify the performance of the proposed scheme.

  • Ultra-Wideband Array Antenna Utilizing Novel Scanning System with Tapped Delay Lines for Short Range Radar

    Fuminori SAKAI  Kazuo OHTA  Kunio SAWAYA  

     
    PAPER-Antennas and Antenna Measurement

      Vol:
    E94-B No:5
      Page(s):
    1194-1200

    A UWB impulse array antenna (IAA) utilizing a novel electrical scanning system with tapped delay lines is proposed and its usefulness is experimentally verified. The experimental antenna is composed of impulse generators installed in each antenna element and tapped delay lines used for creating transmitting trigger signals, which is a simple circuit configuration. It is shown that the output phase of the transmitting wave can be controlled by controlling the period of the trigger signal, and beam direction can be controlled from -30 deg to +30 deg by changing the trigger frequency from Fc-2 kHz to Fc+2 kHz. Evaluation of this antenna as a short range radar is carried out and distance resolution of 25 cm and angle resolution below 10 deg are obtained.

  • On Array Calibration Technique for Multipath Reference Waves

    Hiroyoshi YAMADA  Hiroshi SAKAI  Yoshio YAMAGUCHI  

     
    PAPER-Antennas and Antenna Measurement

      Vol:
    E94-B No:5
      Page(s):
    1201-1206

    High resolution direction-of-arrival (DOA) estimation algorithm for array antennas becomes popular in these days. However, there are several error factors such as mutual coupling among the elements in actual array. Hence array calibration is indispensable to realize intrinsic performance of the algorithm. In the many applications, it is preferable that the calibration can be done in the practical environment in operation. In such a case, the incident wave becomes coherent multipath wave. Calibration of array in the multipath environment is a hard problem, even when DOA of elementary waves is known. To realize array calibration in the multipath environment will be useful for some applications even if reference signals are required. In this report, we consider property of reference waves in the multipath environment and derive a new calibration technique by using the multipath coherent reference waves. The reference wave depends on not only the DOA but also complex amplitude of each elementary wave. However, the proposed technique depends on the DOA only. This is the main advantage of the technique. Simulation results confirm the effectiveness of the proposed technique.

  • Extraction of Informative Genes from Multiple Microarray Data Integrated by Rank-Based Approach

    Dongwan HONG  Jeehee YOON  Jongkeun LEE  Sanghyun PARK  Jongil KIM  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E94-D No:4
      Page(s):
    841-854

    By converting the expression values of each sample into the corresponding rank values, the rank-based approach enables the direct integration of multiple microarray data produced by different laboratories and/or different techniques. In this study, we verify through statistical and experimental methods that informative genes can be extracted from multiple microarray data integrated by the rank-based approach (briefly, integrated rank-based microarray data). First, after showing that a nonparametric technique can be used effectively as a scoring metric for rank-based microarray data, we prove that the scoring results from integrated rank-based microarray data are statistically significant. Next, through experimental comparisons, we show that the informative genes from integrated rank-based microarray data are statistically more significant than those of single-microarray data. In addition, by comparing the lists of informative genes extracted from experimental data, we show that the rank-based data integration method extracts more significant genes than the z-score-based normalization technique or the rank products technique. Public cancer microarray data were used for our experiments and the marker genes list from the CGAP database was used to compare the extracted genes. The GO database and the GSEA method were also used to analyze the functionalities of the extracted genes.

  • A Practical CFA Interpolation Using Local Map

    Yuji ITOH  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E94-D No:4
      Page(s):
    878-885

    This paper introduces a practical color filter array (CFA) interpolation technique. Among the many technologies proposed in this field, the inter-color methods that exploit correlation between color planes generally outperform the intra-color approaches. We have found that the filtering direction, e.g., horizontal or vertical, is among the most decisive factors for the performance of the CFA interpolation. However, most of the state-of-the-art technologies are not flexible enough in determining the filtering direction. For example, filtering only in the upper direction is not usually supported. In this context, we propose an inter-color CFA interpolation using a local map called unified geometry map (UGM). In this method, the filtering direction is determined based on the similarity of the local map data. Thus, it provides more choices of the filtering directions, which enhances the probability of finding the most appropriate direction. It is confirmed through simulations that the proposal outperforms the state-of-the-art algorithms in terms of objective quality measures. In addition, the proposed scheme is as inexpensive as the conventional methods with regard to resource consumption.

  • A DOA Estimation Approach under Nonuniform White Noise

    Jhih-Chung CHANG  Jui-Chung HUNG  Ann-Chen CHANG  

     
    LETTER-Antennas and Propagation

      Vol:
    E94-B No:3
      Page(s):
    831-833

    The letter deals with direction-of-arrival (DOA) estimation under nonuniform white noise and moderately small signal-to-noise ratios. The proposed approach first uses signal subspace projection for received data vectors, which form an efficient iterative quadratic maximum-likelihood (IQML) approach to achieve fast convergence and high resolution capabilities. In conjunction with a signal subspace selection technique, a more exact signal subspace can be obtained for reducing the nonuniform noise effect. The performance improvement achieved by applying the proposal to the classic IQML method is confirmed by computer simulations.

  • Full-Wave Design Considering Slot Admittance in 2-D Waveguide Slot Arrays with Perfect Input Matching

    Miao ZHANG  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:3
      Page(s):
    725-734

    A novel design technique for two-dimensional (2-D) waveguide slot arrays is proposed in this paper that combines a full-wave method of moments (MoM) analysis and an equivalent circuit with the explicit restraint of input matching. The admittance and slot spacing are determined first in an equivalent circuit to realize the desired distribution of power dissipation and phase, with the explicit restraint of input matching. Secondly by applying a full-wave MoM analysis to the finite 2-D array, slot parameters are iteratively determined to realize the active admittance designed above where slot mutual coupling and wall thickness are fully taken into account. The admittance, treated as the key parameter in the equivalent circuit corresponds to the power dissipation of the slots but not to the slot voltage, which is directly synthesized from the radiation pattern. The initial value of the power dissipation is assumed to be proportional to the square of the amplitude of the desired slot voltage. This assumption leads to a feedback procedure, because the resultant slot voltage distribution generally differs from the desired ones due to the effect of non-uniformity in the characteristic impedance on slot apertures. This slot voltage error is used to renew the initial distribution of power dissipation in the equivalent circuit. Generally, only one feedback cycle is needed. Two 2427-element arrays with uniform and Taylor distributions were designed and fabricated at 25.3 GHz. The measured overall reflections for both antennas were suppressed below -18 dB over the 24.3-26.3 GHz frequency range. High aperture efficiencies of 86.8% and 55.1% were realized for the antennas with uniform and Taylor distributions, the latter of which has very low sidelobes below -33 dB in both the E- and H-planes.

  • Robust ESB Beamforming with DD Correction

    Ann-Chen CHANG  Jhih-Chung CHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:3
      Page(s):
    841-843

    This letter deals with eigenspace-based (ESB) beamforming based on the decision-directed (DD) correction with robust capability. It has been shown that the output of the ESB beamformer includes the desired signal and noise under small pointing errors. In conjugation with DD and soft decision decoding scheme, the proposed approach can be used to form a robust DD-ESB beamformer without any specific training sequence. Computer simulations are provided to illustrate the effectiveness of the proposed beamformer.

  • Blind Source Separation Using Dodecahedral Microphone Array under Reverberant Conditions

    Motoki OGASAWARA  Takanori NISHINO  Kazuya TAKEDA  

     
    PAPER-Engineering Acoustics

      Vol:
    E94-A No:3
      Page(s):
    897-906

    The separation and localization of sound source signals are important techniques for many applications, such as highly realistic communication and speech recognition systems. These systems are expected to work without such prior information as the number of sound sources and the environmental conditions. In this paper, we developed a dodecahedral microphone array and proposed a novel separation method with our developed device. This method refers to human sound localization cues and uses acoustical characteristics obtained by the shape of the dodecahedral microphone array. Moreover, this method includes an estimation method of the number of sound sources that can operate without prior information. The sound source separation performances were evaluated under simulated and actual reverberant conditions, and the results were compared with the conventional method. The experimental results showed that our separation performance outperformed the conventional method.

  • Current Status of Josephson Arbitrary Waveform Synthesis at NMIJ/AIST Open Access

    Nobu-hisa KANEKO  Michitaka MARUYAMA  Chiharu URANO  

     
    INVITED PAPER

      Vol:
    E94-C No:3
      Page(s):
    273-279

    AC-waveform synthesis with quantum-mechanical accuracy has been attracting many researchers, especially metrologists in national metrology institutes, not only for its scientific interest but its potential benefit to industries. We describe the current status at National Metrology Institute of Japan of development of a Josephson arbitrary waveform synthesizer based on programmable and pulse-driven Josephson junction arrays.

  • Construction of Binary Array Set with Zero Correlation Zone Based on Interleaving Technique

    Yifeng TU  Pingzhi FAN  Li HAO  Xiyang LI  

     
    PAPER-Information Theory

      Vol:
    E94-A No:2
      Page(s):
    766-772

    Sequences with good correlation properties are of substantial interest in many applications. By interleaving a perfect array with shift sequences, a new method of constructing binary array set with zero correlation zone (ZCZ) is presented. The interleaving operation can be performed not only row-by-row but also column-by-column on the perfect array. The resultant ZCZ binary array set is optimal or almost optimal with respect to the theoretical bound. The new method provides a flexible choice for the rectangular ZCZ and the set size.

  • An Instruction Mapping Scheme for FU Array Accelerator

    Kazuhiro YOSHIMURA  Takuya IWAKAMI  Takashi NAKADA  Jun YAO  Hajime SHIMADA  Yasuhiko NAKASHIMA  

     
    PAPER-Computer System

      Vol:
    E94-D No:2
      Page(s):
    286-297

    Recently, we have proposed using a Linear Array Pipeline Processor (LAPP) to improve energy efficiency for various workloads such as image processing and to maintain programmability by working on VLIW codes. In this paper, we proposed an instruction mapping scheme for LAPP to fully exploit the array execution of functional units (FUs) and bypass networks by a mapper to fit the VLIW codes onto the FUs. The mapping can be finished within multi-cycles during a data prefetch before the array execution of FUs. According to an HDL based implementation, the hardware required for mapping scheme is 84% of the cost introduced by a baseline method. In addition, the proposed mapper can further help to shrink the size of array stage, as our results show that their combination becomes 88% of the baseline model in area.

  • Improving Power Spectra Estimation in 2-Dimensional Areas Using Number of Active Sound Sources

    Yusuke HIOKA  Ken'ichi FURUYA  Yoichi HANEDA  Akitoshi KATAOKA  

     
    PAPER-Engineering Acoustics

      Vol:
    E94-A No:1
      Page(s):
    273-281

    An improvement of estimating sound power spectra located in a particular 2-dimensional area is proposed. We previously proposed a conventional method that estimates sound power spectra using multiple fixed beamformings in order to emphasize speech located in a particular 2-dimensional area. However, the method has one drawback that the number of areas where the active sound sources are located must be restricted. This restriction makes the method less effective when many noise source located in different areas are simultaneously active. In this paper, we reveal the cause of this restriction and determine the maximum number of areas for which the method is able to simultaneously estimate sound power spectra. Then we also introduce a procedure for investigating areas that include active sound sources to reduce the number of unknown power spectra to be estimated. The effectiveness of the proposed method is examined by experimental evaluation applied to sounds recorded in a practical environment.

  • A Center-Feed Linear Array of Reflection-Canceling Slot Pairs on Post-Wall Waveguide

    Jae-Ho LEE  Jiro HIROKAWA  Makoto ANDO  

     
    LETTER-Antennas and Propagation

      Vol:
    E94-B No:1
      Page(s):
    326-329

    Post-wall waveguide with a linear array of reflection-canceling slot pairs and center-feed is designed to cancel the frequency dependent tilting of the main beam and enhance the bandwidth of the antenna boresight gain. The array is fed at the center of the waveguide from the backside; the length of the radiating waveguide is halved and the long line effect in traveling wave operation is suppressed. Authors establish the array design procedure in separate steps to reduce the computational load in the iterative optimization by using Ansoft HFSS simulator. A center-feed linear array as well as an end-feed equivalent with uniform excitation is designed for 25.6 GHz operation and measured. The measured performances confirm the design and the advantage of the centre-feed; a frequency independent boresight beam is observed and the frequency bandwidth for 3 dB gain reduction is enhanced by 1.5 times compared to the end-feed array.

  • Practical Slot Array Design by Method of Moments Using One Basis Function and Constant Correction Length

    Jae-Ho LEE  Takuichi HIRANO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:1
      Page(s):
    158-165

    Method of moments (MoM) is an efficient design and analysis method for waveguide slot arrays. A rectangular entire-domain basis function is one of the most popular approximations for the slot aperture fields. MoM with only one basis function does not provide sufficient accuracy and the use of higher order mode of basis functions is inevitable to guarantee accuracy. However, including the higher order modes in MoM results in a rapid increase in the computational time as well as the analysis complexity; this is a serious drawback especially in the slot parameter optimization. The authors propose the slot correction length that compensates for the omission of higher order mode of basis functions. This length is constant for a wide range of couplings and frequency bands for various types of slots. The validity and universality of the concept of slot correction length are demonstrated for various slots and slot parameters. Practical slot array design can be drastically simplified by the use of MoM with only one basis function together with the slot correction length. As an example, a linear waveguide array of reflection-cancelling slot pairs is successfully designed.

  • The Firing Squad Synchronization Problems for Number Patterns on a Seven-Segment Display and Segment Arrays

    Kazuya YAMASHITA  Mitsuru SAKAI  Sadaki HIROSE  Yasuaki NISHITANI  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E93-D No:12
      Page(s):
    3276-3283

    The Firing Squad Synchronization Problem (FSSP), one of the most well-known problems related to cellular automata, was originally proposed by Myhill in 1957 and became famous through the work of Moore [1]. The first solution to this problem was given by Minsky and McCarthy [2] and a minimal time solution was given by Goto [3]. A significant amount of research has also dealt with variants of this problem. In this paper, from a theoretical interest, we will extend this problem to number patterns on a seven-segment display. Some of these problems can be generalized as the FSSP for some special trees called segment trees. The FSSP for segment trees can be reduced to a FSSP for a one-dimensional array divided evenly by joint cells that we call segment array. We will give algorithms to solve the FSSPs for this segment array and other number patterns, respectively. Moreover, we will clarify the minimal time to solve these problems and show that there exists no such solution.

  • Channel Estimator Employing Narrowband Interference Detector of Wideband OFDM Receiver

    Naohiko IWAKIRI  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E93-A No:12
      Page(s):
    2646-2653

    A multiband system can flexibly create spectral holes to avoid interference between different systems. When two systems within the same frequency band coexist, the multiband system must immediately detect the signals from all users to remove unwanted interference. The complication of creating spectral holes is to obtain an occupied frequency band and an angle-of-arrival of interfering system. These parameters must be measured at the receiver of multiband system and then fed back to the transmitter. This paper presents a channel estimator with an interference detector that is developed to implement and test it's functionality in a multiband system. The proposed estimator can precisely detect the parameters before demodulation, and quickly feed back the interfering system parameters to transmitter. The effective design and the detection error rate were evaluated via verification tests in an anechoic chamber and computer simulations. The results of the proposed technique show an ability of interference detection as well as channel estimation.

321-340hit(959hit)