The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] array(959hit)

481-500hit(959hit)

  • Diffraction Amplitudes from Periodic Neumann Surface: Low Grazing Limit of Incidence (II)

    Junichi NAKAYAMA  Kazuhiro HATTORI  Yasuhiko TAMURA  

     
    LETTER-Electromagnetic Theory

      Vol:
    E89-C No:9
      Page(s):
    1362-1364

    The diffraction of a transverse magnetic (TM) plane wave by a perfectly conductive surface made up of a periodic array of rectangular grooves is studied by the modal expansion method. It is found theoretically that the reflection coefficient approaches -1 but no diffraction takes place when the angle of incidence reaches a low grazing limit. Such singular behavior is shown analytically to hold for any finite values of the period, groove depth and groove width and is then demonstrated by numerical examples.

  • Hardware Implementation of an Inverse Function Delayed Neural Network Using Stochastic Logic

    Hongge LI  Yoshihiro HAYAKAWA  Shigeo SATO  Koji NAKAJIMA  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E89-D No:9
      Page(s):
    2572-2578

    In this paper, the authors present a new digital circuit of neuron hardware using a field programmable gate array (FPGA). A new Inverse function Delayed (ID) neuron model is implemented. The Inverse function Delayed model, which includes the BVP model, has superior associative properties thanks to negative resistance. An associative memory based on the ID model with self-connections has possibilities of improving its basin sizes and memory capacity. In order to decrease circuit area, we employ stochastic logic. The proposed neuron circuit completes the stimulus response output, and its retrieval property with negative resistance is superior to a conventional nonlinear model in basin size of an associative memory.

  • Wave Analysis of the Aperture Field Distribution in Probe-Fed Radial Line Planar Antennas

    Nobuyasu TAKEMURA  Hiroaki MIYASHITA  Shigeru MAKINO  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:9
      Page(s):
    2580-2587

    We propose a wave analysis method for probe-fed Radial Line Planar Antennas (RLPAs) which yields an approximate solution for the aperture field distribution and scattering by loaded probes. Damping of electric power in the radial line due to radiation by antenna elements is included. The method can accommodate the effect of all conductors, including the terminating wall, by introducing the concept of equivalent posts. We have found good correspondence between the measured and calculated values of the aperture field distribution. The proposed method is effective for general geometries of probe-fed RLPAs.

  • New Matrices with Good Auto and Cross-Correlation

    Andrew TIRKEL  Tom HALL  

     
    PAPER

      Vol:
    E89-A No:9
      Page(s):
    2315-2321

    Large sets of matrices with good auto and cross-correlation are rare. We present two such constructions, a method of extending family size by column multiplication and a method of extending physical size by interlacing. These matrices can be applied to digital watermarking of images.

  • The Bank of Matched Filters for an Optical ZCZ Code Using a Sylvester Type Hadamard Matrix

    Takahiro MATSUMOTO  Shigeo TSUKIASHI  Shinya MATSUFUJI  Yoshihiro TANADA  

     
    PAPER

      Vol:
    E89-A No:9
      Page(s):
    2292-2298

    The optical ZCZ code is a set of pairs of binary and bi-phase sequences with zero correlation zone. An optical M-ary direct sequence spread spectrum (M-ary/DS-SS) system using this code can detect a desired sequence without interference of undesired sequences. However, the bank of matched filters in a receiver circuit may fall into large scale. In this paper, we propose the compact construction of a bank of matched filters for an M-ary/DS-SS system using an optical ZCZ code. This filter bank can decrease the number of 2-input adders from O(N2) to O(N) and delay circuits from O(N2) to O(Nlog 2 N), respectively, and is implemented on a field programmable gate array (FPGA) corresponding to 400,000 logic gates.

  • Robust Adaptive Array Employing Null Constraint

    Yi CHU  Wei-Yau HORNG  

     
    LETTER-Antennas and Propagation

      Vol:
    E89-B No:9
      Page(s):
    2659-2661

    A deep null algorithm for adaptive narrowband beamforming in the presence of array gain errors is proposed. This new algorithm not only preserves the desired signal, but also yields superior performance. Simulations confirm this new approach.

  • SMI Adaptive Beamforming Based on Frequency-to-Time Pilot Transform for OFDM System

    Ming LEI  Hiroshi HARADA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:8
      Page(s):
    2261-2265

    We propose an adaptive beamforming scheme for the combination of orthogonal frequency division multiplexing (OFDM) and adaptive antenna array. The combinational scheme is characterized by the sample matrix inverse (SMI) algorithm, frequency-to-time pilot transform and pre-FFT combination. For every OFDM block containing both data and pilot symbols, we transform the frequency-domain pilot symbols to the corresponding time-domain components. One of the obvious advantages of this transform is that the time interval of the antenna weight vector update can be reduced to only one OFDM sample interval, from one OFDM block interval of the conventional beamforming scheme in which the transform is not applied. This feature can greatly accelerate the convergence of SMI beamforming. The simulation results verify that the proposed beamforming scheme is capable of improving the convergence behavior significantly.

  • A Pre-FFT OFDM Adaptive Array Antenna with Eigenvector Combining Open Access

    Shinsuke HARA  Quoc Tuan TRAN  Yunjian JIA  Montree BUDSABATHON  Yoshitaka HARA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:8
      Page(s):
    2180-2188

    This paper proposes a novel pre-FFT type OFDM adaptive array antenna called "Eigenvector Combining." The eigenvector combining array antenna is a realization of a post-FFT type OFDM adaptive array antenna through a pre-FFT signal processing, so it can achieve excellent performance with less computational complexity and shorter training symbols. Numerical results demonstrate that the proposed eigenvector combining array antenna shows excellent bit error rate performance close to the lower bound just with 2 OFDM symbol-long training symbols.

  • Adaptive DOA Tracking Approaches for Time-Space System in CDMA Mobile Environments

    Ann-Chen CHANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:8
      Page(s):
    2208-2217

    It was previously shown that the number of array elements must exceed the number of sources for multiple target direction of arrival (DOA) tracking. This is clearly not practical for code-division multiple access (CDMA) communications since the number of mobile users is very large. To overcome the restriction, adaptive angle tracking approaches employing the code-matched filters and parallel Kalman/H∞ algorithms are presented in this paper. The proposed approaches are applied to the base station of a mobile communication system. Different from Kalman prediction algorithm which minimize the squared tracking error, the adaptive H∞ filtering algorithm is a worst case optimization. It minimizes the effect of the worst disturbances (including modeling error of direction matrix models and array structure imperfection, process noise, and measurement noise). Hence, the difficult problem of tracking the crossing mobiles can be successfully handled by using the code-matched filters. Computer simulation is provided for illustrating the effectiveness of the adaptive angle tracking approaches.

  • Approximations for Detection Probability and Measurement Accuracy Taking into Account Antenna Beam-Pointing Losses

    Sun-Mog HONG  Young K. KWAG  

     
    LETTER-Sensing

      Vol:
    E89-B No:7
      Page(s):
    2106-2110

    Expressions are presented for the probability of target detection and the measurement accuracy of the detection, taking into account the effects of antenna beam-pointing error. Evaluation of these expressions requires numerical integration, which is computationally expensive. Approximate but analytic and efficient expressions are also presented. Numerical examples are given to present the relative accuracy of our analytic approximations.

  • Performance of a Base Station Feedback-Type Adaptive Array Antenna with Limited Number of Feedback Bits

    Jeongkeun CHOI  Yoshihiko AKAIWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:6
      Page(s):
    1793-1798

    Feedback-type Adaptive Array Antenna has been proposed for frequency division duplexed (FDD) system, where the mobile station (MS) measures channel characteristics and sends those back to the base station (BS). Using a higher number of feed-back bits provides better performance. However it wastes channel capacity of the up-link. On the other hand, error in feedback signals transmission causes significant performance degradation. To solve these problems, this paper proposes a method that the MS sends back the difference between the optimum weights calculated at the MS and weights which are currently used at the BS. Bit error rate performance of the system is shown under a realistic propagation condition.

  • A Note on Construction of Orthogonal Arrays with Unequal Strength from Error-Correcting Codes

    Tomohiko SAITO  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1307-1315

    Orthogonal Arrays (OAs) have been playing important roles in the field of experimental design. It has been known that OAs are closely related to error-correcting codes. Therefore, many OAs can be constructed from error-correcting codes. But these OAs are suitable for only cases that equal interaction effects can be assumed, for example, all two-factor interaction effects. Since these cases are rare in experimental design, we cannot say that OAs from error-correcting codes are practical. In this paper, we define OAs with unequal strength. In terms of our terminology, OAs from error-correcting codes are OAs with equal strength. We show that OAs with unequal strength are closer to practical OAs than OAs with equal strength. And we clarify the relation between OAs with unequal strength and unequal error-correcting codes. Finally, we propose some construction methods of OAs with unequal strength from unequal error-correcting codes.

  • Design of 1 m2 Order Plasma Excitation Single-Layer Slotted Waveguide Array with Conducting Baffles and Quartz Glass Strips Using the GSM-MoM Analysis

    Takuichi HIRANO  Kimio SAKURAI  Jiro HIROKAWA  Makoto ANDO  Tetsuya IDE  Atsushi SASAKI  Kazufumi AZUMA  Yukihiko NAKATA  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:5
      Page(s):
    1627-1635

    The authors have proposed a 1 m2 single-layer slotted waveguide array consisting of conducting baffles and quartz glass strips positioned in front of the slot aperture, which is referred to as a vacuum window, for microwave plasma excitation. The effect of the complicated outer vacuum window hinders the realization of uniform distribution. In this paper, a unit-cell of the alternating-phase fed single-layer slotted waveguide array with the vacuum window is analyzed by generalized scattering matrix method (GSM)-method of moments (MoM) hybridization analysis, and the array is designed to realize uniform aperture electromagnetic field distribution, where the plasma and the chamber is neglected. The GSM-MoM analysis gives reliable numerical results while the MoM has numerical errors due to singularities of Green's function for a long cavity. Uniform aperture EM field distribution outside of the vacuum window is observed in near field measurements using a 1/5 scale model antenna, and the validity of the analysis and design is verified.

  • Multi-Stage RLS OFDM Adaptive Array Antenna with Short Pilot Symbols

    Takeo FUJII  Yukihiro KAMIYA  Yasuo SUZUKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:5
      Page(s):
    1589-1597

    Post-FFT type orthogonal frequency division multiplexing (OFDM) adaptive array antennas can reduce the co-channel interference with a few antenna elements under multi-path fading environments. However, the Post-FFT type OFDM adaptive array antennas require a lot of pilot symbols in order to determine the optimal weights in each subcarrier. In packet communication systems, since the data are transmitted burst by burst, the ratio of the effective data in a channel decreases when the long pilot symbols are used. Recursive least squares (RLS) algorithm is one of the weight optimization algorithm with fast convergence based on minimum mean square errors (MMSE). However, the optimal weight determination with a few pilot symbols is difficult. Therefore, in this paper, we propose a novel multi-stage RLS OFDM adaptive array antenna for realizing weight determination with a few pilot symbols. In the proposed method, the weights are optimized by using a multiple stage structure with the stored pilot symbols. Here, the initial weights and the initial inverse matrix of correlation matrix are decided by the results of the weight determination in the adjacent subcarriers of the previous stage. As a result, the weight determination with a few pilot symbols can be achieved.

  • Performance Evaluation for RF-Combining Diversity Antenna Configured with Variable Capacitors

    Hiroya TANAKA  Jun-ichi TAKADA  Ichirou IDA  Yasuyuki OISHI  

     
    PAPER

      Vol:
    E89-C No:4
      Page(s):
    488-494

    An RF adaptive array antenna (RF-AAA) configured with variable capacitors is proposed. This antenna system can control the power combining ratio and phase value of received signals. In this paper, we focus on the diversity effects of RF-AAA. First, we show the design methodology of the combiner circuit to realize the effective combining. Second, the perturbation method and the steepest gradient method are compared for the optimization algorithms to provide fast convergence and suboptimum solutions among the variable circuit constants. Finally, in simulation, we show the RF-AAA can achieve diversity antenna gains of 7.7 dB, 10.9 dB and 12.6 dB for 2-branch, 3-branch and 4-branch configuration, respectively, which have higher performance than the selection combining.

  • Performance Comparison of Two SDMA Approaches for OFDM Signals Using Measured Indoor Channel Data

    Yunjian JIA  Quoc Tuan TRAN  Shinsuke HARA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:4
      Page(s):
    1315-1324

    We have proposed two space division multiple access (SDMA) approaches for OFDM signals: "Virtual Subcarrier Assignment (VISA)" and "Preamble Subcarrier Assignment (PASA)," both of which can enhance the system capacity without significant change of transmitter/receiver structures for already-existing OFDM-based standards such as IEEE802.11a. In order to investigate the performance of the proposed approaches in real wireless scenarios, we conducted a measurement campaign to obtain real channel state data at 5-GHz band in an indoor environment. Using the measured channel data, we can make the performance evaluation realistic. In this paper, after the brief overview of the two proposed SDMA approaches, we describe our measurement campaign in detail. Furthermore, we evaluate the performance of VISA-based system and PASA-based system by computer simulations using the measured channel state data and present a comparative study on the performance of the two proposed SDMA approaches in the realistic wireless environment.

  • Fingerprint Image Enhancement and Rotation Schemes for a Single-Chip Fingerprint Sensor and Identifier

    Satoshi SHIGEMATSU  Koji FUJII  Hiroki MORIMURA  Takahiro HATANO  Mamoru NAKANISHI  Namiko IKEDA  Toshishige SHIMAMURA  Katsuyuki MACHIDA  Yukio OKAZAKI  Hakaru KYURAGI  

     
    PAPER-Electronic Circuits

      Vol:
    E89-C No:4
      Page(s):
    540-550

    This paper presents fingerprint image enhancement and rotation schemes that improve the identification accuracy with the pixel-parallel processing of pixels. In the schemes, the range of the fingerprint sensor is adjusted to the finger state, the captured image is retouched to obtain the suitable image for identification, and the image is rotated to the correct angle on the pixel array. Sensor and pixel circuits that provide these operations were devised and a test chip was fabricated using 0.25-µm CMOS and the sensor process. It was confirmed in 150,000 identification tests that the schemes reduce the false rejection rate to 6.17% from 30.59%, when the false acceptance rate is 0.1%.

  • Circularly Polarized Rounded-Off Triangular Microstrip Line Array Antenna

    David DELAUNE  Josaphat Tetuko SRI SUMANTYO  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:4
      Page(s):
    1372-1381

    The Japan Aerospace Exploration Agency (JAXA) plans to launch a geostationary satellite called Engineering Test Satellite VIII (ETS-VIII) in FY 2006. In this paper, a microstrip line array antenna, which has a very simple structure, is introduced to radiate a circularly polarized wave aiming at ETS-VIII applications. This antenna consists of a triangular conducting line with its vertexes rounded off, located above a ground plane, with a gap on one of its side to produce a circular polarization. The proposed antenna is analyzed by numerical simulations for a single element as well as for a three elements array configuration and the possibility of beam-switching in the azimuth space is experimentally confirmed in the latter case. It is found that by properly feeding the elements constituting the array antenna, for an elevation angle El = 48in Tokyo area, three beams are created in the conical-cut direction with a minimum gain more than 6.6 dBic and an axial ratio less than 3 dB.

  • Analysis of Large-Scale Periodic Array Antennas by CG-FFT Combined with Equivalent Sub-Array Preconditioner

    Huiqing ZHAI  Qiang CHEN  Qiaowei YUAN  Kunio SAWAYA  Changhong LIANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:3
      Page(s):
    922-928

    This paper presents method that offers the fast and accurate analysis of large-scale periodic array antennas by conjugate-gradient fast Fourier transform (CG-FFT) combined with an equivalent sub-array preconditioner. Method of moments (MoM) is used to discretize the electric field integral equation (EFIE) and form the impedance matrix equation. By properly dividing a large array into equivalent sub-blocks level by level, the impedance matrix becomes a structure of Three-level Block Toeplitz Matrices. The Three-level Block Toeplitz Matrices are further transformed to Circulant Matrix, whose multiplication with a vector can be rapidly implemented by one-dimension (1-D) fast Fourier transform (FFT). Thus, the conjugate-gradient fast Fourier transform (CG-FFT) is successfully applied to the analysis of a large-scale periodic dipole array by speeding up the matrix-vector multiplication in the iterative solver. Furthermore, an equivalent sub-array preconditioner is proposed to combine with the CG-FFT analysis to reduce iterative steps and the whole CPU-time of the iteration. Some numerical results are given to illustrate the high efficiency and accuracy of the present method.

  • Robust Beamforming of Microphone Array Using H Adaptive Filtering Technique

    Jwu-Sheng HU  Wei-Han LIU  Chieh-Cheng CHENG  

     
    PAPER-Speech/Audio Processing

      Vol:
    E89-A No:3
      Page(s):
    708-715

    In ASR (Automatic Speech Recognition) applications, one of the most important issues in the real-time beamforming of microphone arrays is the inability to capture the whole acoustic dynamics via a finite-length of data and a finite number of array elements. For example, the reflected source signal impinging from the side-lobe direction presents a coherent interference, and the non-minimal phase channel dynamics may require an infinite amount of data in order to achieve perfect equalization (or inversion). All these factors appear as uncertainties or un-modeled dynamics in the receiving signals. Traditional adaptive algorithms such as NLMS that do not consider these errors will result in performance deterioration. In this paper, a time domain beamformer using H∞ filtering approach is proposed to adjust the beamforming parameters. Furthermore, this work also proposes a frequency domain approach called SPFDBB (Soft Penalty Frequency Domain Block Beamformer) using H∞ filtering approach that can reduce computational efforts and provide a purified data to the ASR application. Experimental results show that the adaptive H∞ filtering method is robust to the modeling errors and suppresses much more noise interference than that in the NLMS based method. Consequently, the correct rate of ASR is also enhanced.

481-500hit(959hit)