The search functionality is under construction.

Keyword Search Result

[Keyword] capacity(320hit)

81-100hit(320hit)

  • Partitioning Trees with Supply, Demand and Edge-Capacity

    Masaki KAWABATA  Takao NISHIZEKI  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1036-1043

    Let T be a given tree. Each vertex of T is either a supply vertex or a demand vertex, and is assigned a positive number, called the supply or demand. Each demand vertex v must be supplied an amount of “power,” equal to the demand of v, from exactly one supply vertex through edges in T. Each edge is assigned a positive number called the capacity. One wishes to partition T into subtrees by deleting edges from T so that each subtree contains exactly one supply vertex whose supply is no less than the sum of all demands in the subtree and the power flow through each edge is no more than capacity of the edge. The “partition problem” is a decision problem to ask whether T has such a partition. The “maximum partition problem” is an optimization version of the partition problem. In this paper, we give three algorithms for the problems. First is a linear-time algorithm for the partition problem. Second is a pseudo-polynomial-time algorithm for the maximum partition problem. Third is a fully polynomial-time approximation scheme (FPTAS) for the maximum partition problem.

  • Channel Capacity Improvement in Near-Field MIMO System Using Metal Wires

    Dalin ZHANG  Toshikazu HORI  Mitoshi FUJIMOTO  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:5
      Page(s):
    1141-1148

    This paper clarifies the effects of metal wires placed around a Multiple-Input-Multiple-Output (MIMO) array with the goal of improving the channel capacity in near-field MIMO systems. Tests are performed on dual-dipole arrays with metal wires placed parallel to the dipoles. If the antenna elements have an appropriate half-power beamwidth (HPBW), there is a clear improvement in the channel capacity of the dual-dipole array. The metal wires are used to increase the multipath richness and the locations of the wires significantly impact the channel capacity. A significant increase in the channel capacity is observed even if only one metal wire is placed in the proper location. We verified the generality of applying a metal wire to improve the channel capacity and that the improvement in the channel capacity is approximately proportional to the number of metal wires.

  • Outage Capacity of Spectrum Sharing Cognitive Radio with MRC Diversity and Outdated CSI under Asymmetric Fading

    Ding XU  Zhiyong FENG  Ping ZHANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:3
      Page(s):
    732-736

    Spectrum sharing cognitive radio (CR) with maximal ratio combining (MRC) diversity under asymmetric fading is studied. Specifically, the channel on the secondary transmitter (STx) to the secondary receiver (SRx) link is Nakagami-m distributed while the channel on the STx to the primary receiver (PRx) link is Rayleigh distributed, and the channel state information (CSI) on the STx-PRx link is assumed to be outdated due to feedback delay. The outage capacity of the secondary user (SU) is derived under the average interference and peak transmit power constraints. The results supported by simulations are presented and show the effects of various system parameters on the outage capacity. Particularly, it is shown that the outdated CSI has no impact on the outage capacities in the cases of low peak transmit power constraint and zero-outage probability. It is also shown that MRC diversity can significantly improve the outage capacity especially for the zero-outage capacity and the outage capacity under low outage probability.

  • Impact of the Primary User's Power Allocation on the Performance of the Secondary User in Cognitive Radio Networks

    Ding XU  Zhiyong FENG  Ping ZHANG  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:2
      Page(s):
    668-672

    In spectrum sharing cognitive radio (CR) networks, secondary user (SU) is allowed to share the same spectrum band concurrently with primary user (PU), with the condition that the SU causes no harmful interference to the PU. In this letter, the ergodic and outage capacity loss constraints are proposed to protect the PU according to its service types. We investigate the performance of the SU in terms of ergodic capacity under various power allocation policies of the PU. Specifically, three PU power allocation policies are considered, namely waterfilling, truncated channel inversion with fixed rate (TIFR) and constant power allocation. We obtain the ergodic capacities of the SU under the three PU power allocation policies. The numerical results show that the PU waterfilling and TIFR power allocation policies are superior to the PU constant power allocation in terms of the capacity of the PU. In particular, it is shown that, with respect to the ergodic capacity of the SU, the PU waterfilling power allocation is superior to the PU constant power allocation, while the PU TIFR power allocation is inferior to the PU constant power allocation.

  • MIMO Phase Control Relaying System

    Atsuki MIZUNO  Daisuke UCHIDA  Hiroyuki ARAI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E96-B No:1
      Page(s):
    340-343

    The current amplify and forward (AF) model causes interference at a mobile terminal (MT) because of relay delay or noise amplification. Therefore, this paper proposes a MIMO phase control relaying system without amplification. The proposed scheme enhances both the communication quality and the channel capacity. Computer simulations indicate the effectiveness of the proposed scheme.

  • Effect of Environmental Factors on System Capacity and Coverage of Femtocell Networks

    Hoon KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:1
      Page(s):
    201-207

    Recently much attention is being devoted to a femtocell's potential for improving indoor cellular coverage with the provision of high data rate services in a wireless environment. Femtocells are usually deployed in homes and buildings and overlay existing macrocells, or microcells which cover wider service areas. In such an overlaid network structure, one of the important issues in network planning is the analysis of system capacity achievable by femtocells, which could be significantly affected by indoor radio propagation properties. This paper addresses a typical environmental scenario where a detailed indoor radio propagation model can be adopted. Moreover, a performance evaluation of embedded femteocell networks reflecting various environmental scenarios and factors is provided by the metrics of outage probability, dynamic range of spectral efficiency, and required separation distances for various wall structures, distance, and the number of walls between the home femtocell and the user. Our computer simulation and numerical analysis indicate an outage probability of 1%∼58%, dynamic range of spectral varies from around 2.2 to 7, while the required separation from the macrocell station is 25 m ∼ 327 m. This information could be useful for femtocell network planning.

  • Low PAPR Precoding Design with Dynamic Channel Assignment for SCBT Communication Systems

    Juinn-Horng DENG  Sheng-Yang HUANG  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E95-B No:11
      Page(s):
    3580-3584

    The single carrier block transmission (SCBT) system has become one of the most popular modulation systems because of its low peak to average power ratio (PAPR). This work proposes precoding design on the transmitter side to retain low PAPR, improve performance, and reduce computational complexity on the receiver side. The system is designed according to the following procedure. First, upper-triangular dirty paper coding (UDPC) is utilized to pre-cancel the interference among multiple streams and provide a one-tap time-domain equalizer for the SCBT system. Next, to solve the problem of the high PAPR of the UDPC precoding system, Tomlinson-Harashima precoding (THP) is developed. Finally, since the UDPC-THP system is degraded by the deep fading channels, the dynamic channel on/off assignment by the maximum capacity algorithm (MCA) and minimum BER algorithm (MBA) is proposed to enhance the bit error rate (BER) performance. Simulation results reveal that the proposed precoding transceiver can provide excellent BER and low PAPR performances for the SCBT system over a multipath fading channel.

  • Call Admission Control with Fractional Buffer Size

    Ruben Pavel MURILLO-PEREZ  Carmen Beatriz RODRIGUEZ-ESTRELLO  Felipe CRUZ-PEREZ  

     
    LETTER-Network Management/Operation

      Vol:
    E95-B No:9
      Page(s):
    2972-2975

    In this letter a general admission control strategy is proposed and mathematically analyzed. Fractional buffering finely adjusts different QoS metrics allowing them to simultaneously achieve their maximum acceptable values, maximizing system capacity. Fractional buffering also allows the adequate and fair performance comparison among different resource management strategies and/or evaluation scenarios.

  • Cooperation-Aware Topology Control for Wireless Ad Hoc Networks with Opportunistic Interference Cancellation

    Xin AO  F. Richard YU  Shengming JIANG  Quansheng GUAN  Gang WEI  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:9
      Page(s):
    3047-3051

    In this letter, we propose a Cooperation-aware topology control scheme with Opportunistic Interference Cancellation (COIC) to improve network capacity in wireless ad hoc networks by jointly considering both upper layer network capacity and physical layer cooperative communications with interference cancellation. We show that the benefits brought by cooperative communications are opportunistic and rely on network structures and channel conditions. Such opportunistic advantages have significant impacts on network capacity, and our proposed COIC can effectively capture these opportunities to substantially improve network capacity.

  • Throttling Capacity Sharing Using Life Time and Reuse Time Prediction in Private L2 Caches of Chip Multiprocessors

    Young-Sik EOM  Jong Wook KWAK  Seong Tae JHANG  Chu Shik JHON  

     
    LETTER-Computer System

      Vol:
    E95-D No:6
      Page(s):
    1676-1679

    In Chip Multi-Processors (CMPs), private L2 caches have potential benefits in future CMPs, e.g. small access latency, performance isolation, tile-friendly architecture and simple low bandwidth on-chip interconnect. But the major weakness of private cache is the higher cache miss rate caused by small private cache capacity. To deal with this problem, private caches can share capacity through spilling replaced blocks to other private caches. However, indiscriminate spilling can make capacity problem worse and influence performance negatively. This letter proposes throttling capacity sharing (TCS) for effective capacity sharing in private L2 caches. TCS determines whether to spill a replaced block by predicting reuse possibility, based on life time and reuse time. In our performance evaluation, TCS improves weighted speedup by 48.79%, 6.37% and 5.44% compared to non-spilling, Cooperative Caching with best spill probability (CC) and Dynamic Spill-Receive (DSR), respectively.

  • Achievable Capacity of Closed/Open-Access Cognitive Radio Systems Coexisting with a Macro Cellular Systems

    Hiromasa FUJII  Hiroki HARADA  Shunji MIURA  Hidetoshi KAYAMA  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1190-1197

    We provide a theoretical analysis of the capacity achievable by an open/closed-access cognitive radio system, where the system uses spectrum resources primarily allocated to a macro cellular system. For spectrum sharing, we consider two methods based on listen-before-talk and adaptive transmit power control principles. Moreover, outdoor and indoor installations of CRS stations are investigated. We have also taken the effect of antenna heights into consideration. Numerical results reveal the capacities possible from CRS base stations installed within the coverage area of the macro cell system. We show numerical examples that compare the capacities achievable by open-access and closed access cognitive radio systems.

  • Adaptive Bandwidth Control for Dynamic Spectrum Control Aided Spectrum Sharing in Private Wireless Networks

    Tomomi AOKI  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1093-1099

    This paper proposes an adaptive bandwidth control scheme for the private wireless networks. Carrier sense multiple access with collision avoidance (CSMA/CA), which is commonly used within the private networks, is not efficient in terms of spectral efficiency due to its strict collision avoidance process. In order to relax the collision avoidance rule, this paper employs dynamic spectrum control (DSC), in which a certain number of discrete spectra having the higher channel gain is selected in a selfish manner with each link allowing a partial band interference. Such interference may be suppressed by the equalizer at the receiver. Aiming at optimal selection of the bandwidth for the selfish DSC according to channel realizations, in the sense of throughput maximization, this paper proposes a channel capacity maximization-based BAR control scheme. Computer simulations validate that the proposed scheme achieves high throughput efficiency.

  • Analysis on the Capacity of a Cognitive Radio Network under Delay Constraints

    Yuehong GAO  Yuming JIANG  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1180-1189

    In this paper, performance analysis of a cognitive radio network is conducted. In the network, there is imperfect sensing and the wireless channel is a Gilbert-Elliott channel. The focus is on the network's capacity in serving traffic with delay constraints. Specifically, the maximum traffic arrival rates of both primary users and secondary users, which the network can support with guaranteed delay bounds, are investigated. The analysis is based on stochastic network calculus. A general relationship between delay bounds, traffic patterns and important characteristics such as spectrum sensing errors and channel fading of the cognitive radio network is derived. This relationship lays a foundation for finding the capacity under different traffic scenarios. Two specific traffic types are exemplified, namely periodic traffic and Poisson traffic. Analytical results are presented in comparison with simulation results. The comparison shows a good match between them, validating the analysis.

  • Spreading and Interleaving Design for Synchronous Interleave-Division Multiple-Access

    Guanghui SONG  Jun CHENG  Yoichiro WATANABE  

     
    PAPER-Information Theory

      Vol:
    E95-A No:3
      Page(s):
    646-656

    A K-user interleave-division multiple-access (IDMA) system with symbol-synchronous and equal-power users is considered. In this IDMA system, the spreading, interleaving, and multiple-access channel (MAC) are jointly considered as an equivalent channel, referred to as an IDMA channel. Given channel signal-to-noise ratio (SNR), the sum capacity of the IDMA channel is only determined by a K-user spread-interleave (SI) matrix. First, it is shown that to maximize the sum capacity of the IDMA channel, rows or columns of its K-user SI matrix should be pairwise orthogonal. The optimal K-user SI matrix is constructed. Second, for the IDMA system with each user employing the same spreading sequence followed by random interleaving, it is shown that, as the number of users approaches infinity, the sum capacity of the IDMA channel converges to a determinate value, which is achieved by a balanced spreading sequence. Moreover, when both the number of users and the data length approach infinity, this determinate value of sum capacity is achieved by an arbitrary spreading sequence. Furthermore, for a finite number of users, an optimal spreading sequence is derived by minimizing an expected column correlation of the K-user SI matrix. It shows that this optimal spreading sequence provides the maximum ergodic sum capacity.

  • Enhancing Endurance of Huge-Capacity Flash Storage Systems by Selectively Replacing Data Blocks

    Wei-Neng WANG  Kai NI  Jian-She MA  Zong-Chao WANG  Yi ZHAO  Long-Fa PAN  

     
    PAPER-Computer System

      Vol:
    E95-D No:2
      Page(s):
    558-564

    The wear leveling is a critical factor which significantly impacts the lifetime and the performance of flash storage systems. To extend lifespan and reduce memory requirements, this paper proposed an efficient wear leveling without substantially increasing overhead and without modifying Flash Translation Layer (FTL) for huge-capacity flash storage systems, which is based on selective replacement. Experimental results show that our design levels the wear of different physical blocks with limited system overhead compared with previous algorithms.

  • Adaptive Cooperation Switching for Multicell Downlink Using Statistical CSI

    Jun ZHANG  Shi JIN  Xiqi GAO  Kai-Kit WONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:2
      Page(s):
    663-667

    This letter proposes an adaptive scheme that switches between cooperative and non-cooperative transmission for multicell downlink systems in Kronecker spatially correlated channels, which exploits statistical channel state information (CSI). Based on the received signal-to-noise ratios (SNRs) and a cooperation metric, we propose a simple base station (BS) association method and then derive low-SNR capacity approximations for both cooperative and non-cooperative systems. Using the results, we provide a low-complexity efficient cooperation switching method to enhance the system capacity. Results show that the proposed method is more efficient than the conventional method to search the switching point.

  • Protecting Primary Users in Cognitive Radio Networks with Effective Capacity Loss Constraint

    Ding XU  Zhiyong FENG  Ping ZHANG  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:1
      Page(s):
    349-353

    Cognitive radio (CR) in spectrum sharing mode allows secondary user (SU) to share the same spectrum simultaneously with primary user (PU), as long as the former guarantees no harmful interference is caused to the latter. This letter proposes a new type of constraint to protect the PU systems that are carrying delay-sensitive applications, namely the PU effective capacity loss constraint, which sets an upper bound on the maximum effective capacity loss of the PU due to the SU transmission. In addition, the PU effective capacity loss constraint is approximately transformed to the interference temperature (power) constraint, to make it easier to be implemented. As an example, we obtain a closed form expression of the SU effective capacity under the approximated peak interference power constraint and the results of simulations validate the proposed PU protection criterion.

  • Uplink Capacity of OFDM Multi-User MIMO Using Near-ML Detection in a Cellular System

    Masashi ITAGAKI  Tetsuya YAMAMOTO  Kazuki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:1
      Page(s):
    198-205

    Multi-user multi-input multi-output (MIMO) system has been attracting much attention due to its high spectrum efficiency. Non-linear MIMO signal detection methods with less computational complexity have been widely studied for single-user MIMO systems. In this paper, we investigate how a lattice reduction (LR)-aided detection and a maximum likelihood detection (MLD) employing the QR decomposition and M-algorithm (QRM-MLD), which are commonly known as non-linear MIMO signal detection methods, improve the uplink capacity of a multi-user MIMO-OFDM cellular system, compared to simple linear detection methods such as zero-forcing detection (ZFD) and minimum mean square error detection (MMSED). We show that both LR-aided linear detection and QRM-MLD can achieve higher uplink capacity than simple linear detection at the cost of moderate increase of computational complexity. Furthermore, QRM-MLD can obtain the same uplink capacity as MLD.

  • Directivity Control by Asymmetrically Fed Dipole Antenna with PIN Diode Switches

    Yuuya HOSHINO  Akira SAITOU  Kazuhiko HONJO  

     
    LETTER-Antennas

      Vol:
    E95-B No:1
      Page(s):
    106-108

    A feed-point-selective, asymmetrically fed dipole antenna has been proposed for multiple-input multiple-output (MIMO) applications. By using PIN diode switches, an asymmetrical antenna feed is realized so as to control antenna directivities. The two basic requirements for MIMO antenna radiation patterns, namely, a decrease in overlap and control in direction, have been achieved. Additionally, to enhance directivities for the antenna with PIN diodes, a reflector has been introduced. The gain toward the reflector decreased by 2 dB, while the gain in the direction of the maximum gain increased by 2 dB. The developed antenna can correspond to a variable power angular spectrum (PAS).

  • Design of MIMO Antennas for Indoor Base Station and Mobile Terminal Open Access

    Hiroyuki ARAI  Daisuke UCHIDA  

     
    INVITED PAPER

      Vol:
    E95-B No:1
      Page(s):
    10-17

    Two design parameters, SNR and correlation, are key factors for enhancing channel capacity in MIMO systems. Achieving high SNR and low correlation is desirable in antenna design. This paper discusses the relation between channel capacity and these two parameters, and presents simple formulas of this relation for propagation channels and antenna coupling of mobile terminals. According to these guidelines, indoor base station antennas are designed and examined using propagation measurements. We also present a suitable antenna design for mobile terminal antennas and based on a realistic propagation model, predicted the channel capacity of the antenna.

81-100hit(320hit)