The search functionality is under construction.

Keyword Search Result

[Keyword] electromagnetic simulation(10hit)

1-10hit
  • Field Uniformity and Correlation Coefficient Analysis of KRISS Reverberation Chamber

    Aditia Nur BAKTI  No-Weon KANG  Jae-Yong KWON  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2018/04/25
      Vol:
    E101-B No:11
      Page(s):
    2289-2296

    Reverberation chambers (RCs) are used widely in the electromagnetic measurement area. An RC is designed to have a long reverberation time, generate numerous modes, and provide good field uniformity within the chamber. The purpose of this paper is to describe the design process and measurement of the KRISS Reverberation Chamber (KRC). KRC models with 4.5m × 3.4m × 2.8m dimensions are simulated by 3D numerical simulation software. The field uniformity and correlation coefficient are then analyzed at 200MHz to obtain the optimized model. The simulation results show good performance in terms of field uniformity and are confirmed by measurement from 200MHz to 1GHz. The lowest usable frequency (LUF) of KRC was confirmed by field uniformity to be 200MHz. However, the stirrer correlation coefficient results show good performance above 300MHz.

  • Convergence Properties of Iterative Full-Wave Electromagnetic FEM Analyses with Node Block Preconditioners

    Toshio MURAYAMA  Akira MUTO  Amane TAKEI  

     
    PAPER

      Vol:
    E101-C No:8
      Page(s):
    612-619

    In this paper we report the convergence acceleration effect of the extended node patch preconditioner for the iterative full-wave electromagnetic finite element method with more than ten million degrees of freedom. The preconditioner, which is categorized into the multiplicative Schwarz scheme, effectively works with conventional numerical iterative matrix solving methods on a parallel computer. We examined the convergence properties of the preconditioner combined with the COCG, COCR and GMRES algorithms for the analysis domain encompassed by absorbing boundary conditions (ABC) such as perfectly matched layers (PML). In those analyses the properties of the convergence are investigated numerically by sweeping frequency range and the number of PMLs. Memory-efficient nature of the preconditioner is numerically confirmed through the experiments and upper bounds of the required memory size are theoretically proved. Finally it is demonstrated that this extended node patch preconditioner with GMRES algorithm works well with the problems up to one hundred million degrees of freedom.

  • Simulational Approach to Realize a Triplexer Based on Bandpass Filters Using Wideband Resonators

    Kosei TANII  Koji WADA  

     
    PAPER

      Vol:
    E99-C No:7
      Page(s):
    751-760

    A triplexer is presented by using bandpass filters (BPFs) which consist of two-stage of wideband resonator and additional open-circuited stubs. The resonator is firstly proposed by using a coupled-line and an inductive element loaded transmission line. This resonator produces the wide passband by a dual-mode resonance, high attenuation level at stopbands, and the steepness at the edge of the passband due to the attenuation poles. In order to understand the behavior of the resonator, the conditions for resonances and attenuation poles are especially solved and their current densities are analyzed by an electromagnetic simulation. Secondly, three types of wideband BPFs are constituted and finally a wideband triplexer is composed by using these BPFs. The basic characteristics of the proposed BPFs and the matching methodology enable to realize the triplexer whose desired passbands are around 3.1-5.1 GHz, 5.85-7.85 GHz, and 8.6-10.6 GHz with high isolation performance at the other passbands. The proposed triplexer is predominance in the flexible bandwidth or wide operating frequency range. All the BPFs and the triplexer are implemented on a planar printed circuit board assuming the use of the microstrip line structure.

  • Investigation of Electromagnetic Noise Coupling in a Board with a Digital-RF Mixed IC by Measurement and Analysis

    Kenta TSUKAMOTO  Mizuki IWANAMI  Eiji HANKUI  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1182-1187

    In this paper the amplitude probability distribution (APD) measurement method is applied to evaluate noise coupling to an antenna on an evaluation board that uses mixed RF and digital signals of an IC. We analytically investigate noise coupling path to the antenna where the correlation coefficient matches the APD curve of the evaluation board. Moreover, in order to verify the analysis results, the noise coupling path in the board is evaluated by measurements involving In-phase/Quadrature (I/Q) signals as well as electromagnetic simulations. As a result, we demonstrate that APD method is effective in evaluating a degree of noise coupling from an IC to multiple antennas on the board, and confirm that the intensity of noise coupling to each antenna is affected greatly by the board layout patterns.

  • Comparisons of Simulated and Measured Electric Field Distributions in a Cabin of a Simplified Scale Car Model

    Satoru HORIUCHI  Kunihiko YAMADA  Shingo TANAKA  Yoshihide YAMADA  Naobumi MICHISHITA  

     
    PAPER-Measurements

      Vol:
    E90-B No:9
      Page(s):
    2408-2415

    The electric fields inside and outside a car must be carefully determined when designing a wireless communication system to be employed in the car. This paper introduces an effective simulation method and a precise measurement method of electric field distributions in a cabin of a simplified scale car model. A 1/3 car model is employed for ease of measurement. The scaled frequency of 2859 MHz, 3 times 953 MHz, is employed. The use of a moment method simulator utilizing the multilevel fast multipole method allows calculations to be performed on a personal computer. In order to judge the accuracy of simulation results, convergence of simulation output in accordance with segment size (triangle edge length) changes is ensured. Simulation loads in the case of metallic body only and a metallic body with window glass are also shown. In the measurements, an optical electric field probe is employed so as to minimize the disturbances that would otherwise be caused by metallic feed cable; precise measurement results are obtained. Comparisons of measured and simulated results demonstrate very good agreement which confirms the accuracy of the calculated results. 3-dimensional electric field distributions in the car model are shown and 3-dimensional standing wave shapes are clarified. Moreover, calculated and measured radiation patterns of the car model are shown so the total electric field distributions around a car are clarified.

  • Electric Field Simulations around a Car of the Tire Pressure Monitoring System

    Kouichi TANOSHITA  Koji NAKATANI  Yoshihide YAMADA  

     
    PAPER-Electromagnetics

      Vol:
    E90-B No:9
      Page(s):
    2416-2422

    In order to support driving safety, TPMS (Tire Pressure Monitoring System) has been introduced in U.S.A. and Europe. In Japan, the AIRwatch system has been developed and commercialized. Some studies were made to clarify the electric field environment of this system. However, no detailed calculation of the electric field between the transmitter in the tire and the receiving antenna has been published. This paper clarifies the electric field environment of the Japanese system through electromagnetic simulations by a high performance MoM simulator that utilizes the MLFMM scheme. First of all, electric wave emissions from an antenna mounted in a tire are shown to be larger than that of the same antenna in free space. The tire rubber effects are also investigated. Next, electric field distributions on the windshield holding the receiving antenna are calculated. By comparing calculated electric field levels with those in the free space condition, car body interruptions are clarified. Because car body interruptions are not so severe, it is shown that the free space electric field levels can be used as rough design parameters. Moreover, electric field changes due to tire rotation are also clarified. Calculation accuracy is confirmed by the good agreement with measured data collected from a 1/5 scale car model. To permit estimations to be made in actual situations, the effects of the ground are also investigated. This simulation study introduces a lot of important data useful in TPMS system design.

  • Si Substrate Resistivity Design for On-Chip Matching Circuit Based on Electro-Magnetic Simulation

    Masayoshi ONO  Noriharu SUEMATSU  Shunji KUBO  Kensuke NAKAJIMA  Yoshitada IYAMA  Tadashi TAKAGI  Osami ISHIDA  

     
    PAPER-Electromagnetics Simulation Techniques

      Vol:
    E84-C No:7
      Page(s):
    923-930

    For on-chip matching Si-MMIC fabricated on a conventional low resistivity Si substrate, the loss of on-chip inductors is quite high due to the dielectric loss of the substrate. In order to reduce the loss of on-chip matching circuit, the use of high resistivity Si substrate is quite effective. By using electro-magnetic simulation, the relationship between coplanar waveguide (CPW) transmission line characteristics and the resistivity of Si substrate is discussed. Based on the simulated results, the resistivity of Si substrate is designed to achieve lower dielectric loss than conductor loss. The effectiveness of high resistivity Si substrate is evaluated by the extraction of equivalent circuit model parameters of the fabricated on-chip spiral inductors and the measurement of the fabricated on-chip matching Si-MMIC LNA's.

  • Design of a Mode Converter for Quasi-Optical Amplifiers by Using 3D EM Simulation Software

    Toshihisa KAMEI  Hisashi MORISHITA  Chun-Tung CHEUNG  David B. RUTLEDGE  

     
    PAPER-Applications of Electromagnetics Simulators

      Vol:
    E84-C No:7
      Page(s):
    955-960

    As the capacity of the personal computer and workstation increase rapidly, many electromagnetic simulators are widely used. In this paper, Ansoft's High Frequency Structure Simulator (HFSS), which is a commercial software product, is applied to design a mode converter operating at 35 GHz is fabricated based on the simulation results. The numerical results are in good agreement with the measured data.

  • Millimeter-Wave Flip-Chip MMIC Structure with High Performance and High Reliability Interconnects

    Masaharu ITO  Kenichi MARUHASHI  Hideki KUSAMITSU  Yoshiaki MORISHITA  Keiichi OHATA  

     
    PAPER-RF Assembly Technology

      Vol:
    E82-C No:11
      Page(s):
    2038-2043

    The flip-chip structure for millimeter-wave MMICs has been investigated to obtain high performance and high reliability. In our approach, an air gap between the MMIC and the alumina substrate was determined so as not to change electrical characteristics from those of the unflipped MMIC. We calculated the proximity effect between the MMIC and the substrate by using 3D-electromagnetic simulator, and found that the air gap should be controlled to be greater than 20 µm. Since the discontinuity of transmission lines at bump interconnects is not negligible above 60 GHz, we constructed the LCR-equivalent circuit for the bump interconnect and confirmed its validity by comparing measurement with calculation. Based on these investigations, the 60- and 76-GHz-band CPW three-stage low noise amplifiers were successfully mounted on the alumina substrate using a thermal compression bonding process. The gain of the flipped 60- and 76-GHz-band MMICs are greater than 18 dB at around 60 GHz and 17 dB at around 76 GHz, respectively. The noise figures are 3.6 dB and 3.9 dB, respectively. The gain and noise performances showed little degradation compared to those of the unflipped MMICs when appropriate bonding conditions are given. We confirmed that the flip-chip structure has high reliability under a thermal cycle test. From these results, flip-chip technology is promising for millimeter-wave applications.

  • A Compact Plastic Package with High RF Isolation by Subsidiary Inner Ground Leads

    Hidetoshi ISHIDA  Kazuo MIYATSUJI  Tsuyoshi TANAKA  Daisuke UEDA  Chihiro HAMAGUCHI  

     
    PAPER-RF Assembly Technology

      Vol:
    E82-C No:11
      Page(s):
    2044-2049

    A novel method to obtain a compact plastic package with higher isolation by providing subsidiary inner ground leads between outer leads is proposed and demonstrated. The effect of the subsidiary ground leads is investigated by using a 3-dimensional electromagnetic field simulation and measuring the fabricated packages. Newly designed package with subsidiary ground leads achieves higher isolation by more than 10 dB at 3 GHz as compared to a conventional package. This package is applied to GaAs SPDT switch IC's. Isolation of the switch IC's is improved by 5 dB at 3 GHz by the subsidiary inner ground leads. The isolation characteristics are discussed based on the equivalent circuit extracted from the simulation results.