1-10hit |
The field electron emission characteristics of a p-type Si emitter sharpened by a spirally scanned Ga focused-ion-beam milling process were investigated. Saturated Fowler--Nordheim (F--N) plots, which are unique phenomena of p-type semiconductor emitters, were observed. The slight increase of the emission current in the saturated F--N plots region was discussed in terms of the depletion layer width in which electron generation occurs. The temperature dependence of the field electron emission current was also discussed. The activation energy of carrier generation was determined to be 0.26,eV, ascribable to the surface states that accompany the defects introduced by the Ga ion beam. When the emitter was irradiated by a 650-nm-wavelength laser, the increase in the emission current, i.e., the photoexcited emission current, was observed in the saturated region of the F--N plots. The photoexcited emission current was proportional to the laser intensity.
Kenichiro NAKAMATSU Masao NAGASE Toshinari ICHIHASHI Kazuhiro KANDA Yuichi HARUYAMA Takashi KAITO Shinji MATSUI
Our investigation of diamond-like carbon (DLC) nano-springs with a 130 nm spring-section diameter, which were fabricated by focused-ion-beam chemical vapor deposition (FIB-CVD), showed for the first time that nanosprings can be stretched. We observed large displacements of the FIB-CVD nanosprings using in situ optical microscopy; in other words, the nanosprings showed behavior similar to that of macroscale springs. In addition, we investigated the dependence of the spring constant of DLC nanosprings on spring diameter. The spring constants, measured using commercially available cantilevers, ranged from 0.47 to 0.07 N/m. The diameter dependence of spring constant can be accurately expressed by the conventional formula for a coil spring. The estimated shear modulus of the DLC nano-springs was about 70 GPa. This value is very close to the value of conventional coil springs made of steel. Furthermore, we measured the stiffness of a DLC nanospring annealed at 1000 in vacuum. The stiffness was decreased to approximately half of the stiffness of the nanospring without annealing.
Yoshihisa SOUTOME Hidehiro SHIGA Yoichi OKABE
YBa2Cu3O7-δ co-planar Josephson junctions by Focused Ion Beam were characterized by changing the thickness of YBa2Cu3O7-δ films. The junctions had the thickness dependence of the characteristics. The characteristics were dominantly divided into two types. One had the I-V curve of a flux-flow junction and a weak magnetic response. The other had the I-V curve of RSJ, the IcRn product from 0. 1 mV to 0. 5 mV at 4. 2 K, and a good magnetic response. The critical current density of the junctions increased exponentially with increasing film thickness. From the observation of the junction surface, the junction length was decreased with increasing film thickness by the horizontal growth of the normally grown YBaCuO. In the thicker film (above 240 nm), the microshorts of the normally grown YBaCuO on the abnormally grown YBaCuO area were observed. It is considered that the main part of Josephson current for the junctions changes from the abnormally grown YBaCuO to microshorts when increased with the film thickness.
Logic operations in principle have been demonstrated based on the planar high-Tc Superconducting QUantum Interference Device (SQUID). Two kinds of logic gates were produced by using the focused ion beam (FIB) superconducting weak links fabricated in NdBa2Cu3O7-δ (NBCO) thin films. Logic gates investigated in this paper are (1) an rf-SQUID based logic gate which utilizes threshold characteristics, and (2) a dc-SQUID based logic gate which is an elementary gate of RSFQ circuits. Elementary logic operation such as (1) AND/OR logic and (2) SET-RESET flip-flop operation were successfully obtained in the logic gates. In addition to the present experimental results, some problems and future prospects are also discussed.
Yunnghee KIM Yoshihisa SOUTOME Hiroshi KIMURA Yoichi OKABE
A YBaCuO-Nonsuperconductive YBaCuO-YBaCuO coplanar Josephson junction has been fabricated, using Nonsuperconductive YBaCuO thin film deposited on an MgO(100) substrate with intentional and very local damage which was created by Focused Ion Beam. The YBaCuO grown on the damaged section of the substrate turned out to be non-superconductor, due to implanted Ga ions and the change in the crystal quality, facilitating formation of an S-N-S junction. We found the important fact that the critical current density decreased exponentially with inverse of the junction length which was changed from 0.2 to 1 µm, and that Ga ion was detected in the thin films of the junctions, and that the thin films of the junctions were formed by a mixture of an amorphous, a polycrystal and a crystal, which is confirmed by Transmission Electron Diffraction. And the damaged substrate gave rise to Ga segregation and the mixed crystal, which played an very important role to form the normal metallic YBCO thin film of the Josephson junction. All these facts are related with the S-N-S junctions.
Recent developments and case studies regarding VLSI device chip failure analysis are reviewed. The key failure analysis techniques reviewed include EMMS (emission microscopy), OBIC (optical beam induced current), LCM (liquid crystal method), EBP (electron beam probing), and FIB (focused ion beam method). Further, future possibilities in failure analysis, and some promising new tools are introduced.
Akio ANZAI Mikinori KAWAJI Takahiko TAKAHASHI
It has become more important to shorten development periods of high performance computer systems and their LSIs. During debugging of computer prototypes, logic designers request very frequent LSI refabrication to change logic circuits and to add some functions in spite of their extensive logic simulation by several GFLOPS supercomputers. To meet these demands, an automated on-chip direct wiring modification system has been developed, which enables wire-cut and via-digging by a precise focused ion beam machine, and via-filling and jumper-writing by a laser CVD machine, directly on pre-redesign (original) chips. This modification system was applied to LSI reworks during the development of Hitachi large scale computers M-880 and S-3800, and contributed to shorten system debugging period by four to six months.
New focused ion beam (FIB) methods for microscopic cross-sectioning and observation, microscopic crosssectioning and elemental analysis, and aluminum film microstructure observation are presented. The new methods are compared to the conventional methods and the conventional FIB methods, from the four viewpoints such as easiness of analysis, analysis time, spatial resolution, and pinpointing precision. The new FIB methods, as a result, are shown to be the best ones totally judging from the viewpoints shown above.
Takahide ISHIKAWA Makio KOMARU Kazuhiko ITOH Katsuya KOSAKI Yasuo MITSUI Mutsuyuki OTSUBO Shigeru MITSUI
Focused Ion Beam (FIB) trimming techniques for circuit optimization for GaAs MMICs by adjusting the parameters of IC components such as resistors, capacitors, microstrip lines, and FETs have been developed. The adjustment is performed by etching of the components and depositing of metal films for micro-strip lines. This technology turned out to be in need of only half a day to optimize the circuit pattern without any further wafer processes, while a conventional method that is comprised of revising mask pattern and following several cycles of wafer process has needed 0.5-1.0 year requiring huge amount of development cost. This technology has been successfully applied to optimization of an X-band low dissipation current single stage MMIC amplifier, and has shown its great feasibility for shortening the turn around time.
Hiroaki NAMBU Kazuo KANETANI Youji IDEI Kunihiko YAMAGUCHI Toshirou HIRAMOTO Nobuo TAMBA Kunihiko WATANABE Masanori ODAKA Takahide IKEDA Kenichi OHHATA Yoshiaki SAKURAI Noriyuki HOMMA
A new redundancy technique especially suitable for ultra-high-speed static RAMs (SRAMs) has been developed. This technique is based on a decoding-method that uses two kinds of fuses without introducing any additional delay time. One fuse is initially ON and can be turned OFF afterwards, if necessary, by a cutting process using a focused ion beam (FIB). The other is initially OFF and can be turned ON afterwards by a connecting process using laser chemical vapor deposition (L-CVD). This technique is applied to a 64 kbit SRAM having a 1.5-ns access time. The experimental results obtained through an SRAM chip repaired using this redundancy technique show that this technique does not introduce any increase in the access time and does not reduce the operational margin of the SRAM.