The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] frequency(1407hit)

641-660hit(1407hit)

  • On the Estimation of Carrier Frequency Offset and DC Offset for OFDM Systems

    Hai LIN  Takeshi NAKAO  Weiming LU  Katsumi YAMASHITA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3288-3296

    In an orthogonal frequency division multiplexing (OFDM) receiver with direct-conversion architecture, carrier frequency offset (CFO) and direct-current offset (DCO), which cause severe performance degradation, need to be estimated and compensated. Recently, by investigating the subspace of OFDM signal after coarse DCO cancellation using time-domain average, we have proposed a nullspace-based estimator (NSE), for blind CFO and DCO estimation. In this paper, based on an analysis of the cost function of the NSE, we propose a common nullspace based estimator (CNSE). It is shown that by matching the frequency occupation of the received OFDM signal with CFO and DCO, the CNSE can achieve the full performance potential of the NSE. Also, the performance analysis reveals that the CNSE can asymptotically approach the Cramer-Rao bound (CRB) of OFDM CFO estimation in the presence of DCO. Finally the analysis results are confirmed by simulations.

  • Joint Channel Estimation and Phase Noise Suppression for OFDM Systems

    Yong-Hwa KIM  Seong-Cheol KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3371-3374

    Phase noise (PHN) can cause the common phase error (CPE) and the inter-carrier interference (ICI), both of which impair the accurate channel estimation in orthogonal frequency division multiplexing (OFDM) systems. In this letter, we build a new signal model parameterized by the channel impulse response, the CPE and the ICI. Based on this model, we derive the maximum likelihood estimator (MLE) and the minimum mean square error estimator (MMSEE). Simulation results show that the proposed schemes significantly improve the performance of OFDM systems in the presence of PHN.

  • Gramian-Preserving Frequency Transformation for Linear Discrete-Time State-Space Systems

    Shunsuke KOSHITA  Satoru TANAKA  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Systems and Control

      Vol:
    E91-A No:10
      Page(s):
    3014-3021

    This paper proposes the Gramian-preserving frequency transformation for linear discrete-time state-space systems. In this frequency transformation, we replace each delay element of a discrete-time system with an allpass system that has a balanced realization. This approach can generate transformed systems that have the same controllability/observability Gramians as those of the original system. From this result, we show that the Gramian-preserving frequency transformation gives us transformed systems with different magnitude characteristics, but with the same structural property with respect to the Gramians as that of the original system. This paper also presents a simple method for realization of the Gramian-preserving frequency transformation. This method makes use of the cascaded normalized lattice structure of allpass systems.

  • Soft Decision Directed Channel Estimation with Interference Cancellation for a MIMO System Using Iterative Equalization and Decoding

    Masatsugu HIGASHINAKA  Hiroshi KUBO  Akihiro OKAZAKI  Yasutaka OGAWA  Takeo OHGANE  Toshihiko NISHIMURA  

     
    PAPER-Communication Theory

      Vol:
    E91-A No:10
      Page(s):
    2787-2797

    This paper proposes a novel channel estimation method for iterative equalization in MIMO systems. The proposed method incorporates co-channel interference (CCI) cancellation in the channel estimator and the channel estimation is successively performed with respect to each stream. Accuracy of channel estimation holds the key to be successfully converged the iterative equalization and decoding process. Although the channel estimates can be re-estimated by means of LS (Least Square) channel estimation using tentative decisions obtained in the iterative process, its performance is severely limited in a MIMO system because of erroneous decisions and ill-conditioned channel estimation matrix. The proposed method can suppress the above effects by means of CCI cancellation and successive channel estimation. Computer simulation confirms that the proposed channel estimation method can accurately estimate the channel, and the receiver with iterative equalization and the proposed method achieves excellent decoding performance in a MIMO-SM system.

  • A Support Vector Machine-Based Gender Identification Using Speech Signal

    Kye-Hwan LEE  Sang-Ick KANG  Deok-Hwan KIM  Joon-Hyuk CHANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E91-B No:10
      Page(s):
    3326-3329

    We propose an effective voice-based gender identification method using a support vector machine (SVM). The SVM is a binary classification algorithm that classifies two groups by finding the voluntary nonlinear boundary in a feature space and is known to yield high classification performance. In the present work, we compare the identification performance of the SVM with that of a Gaussian mixture model (GMM)-based method using the mel frequency cepstral coefficients (MFCC). A novel approach of incorporating a features fusion scheme based on a combination of the MFCC and the fundamental frequency is proposed with the aim of improving the performance of gender identification. Experimental results demonstrate that the gender identification performance using the SVM is significantly better than that of the GMM-based scheme. Moreover, the performance is substantially improved when the proposed features fusion technique is applied.

  • Single Carrier Frequency Offset Estimation with Low Threshold Effect

    Ju-Ya CHEN  Meng-Hong HSIEH  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3364-3367

    Frequency offset estimation is an important technique in receiver design of wireless communications. In many applications, sampled single frequency tone is selected as training symbol/sequence for frequency synchronization. Under this assumption, frequency offset estimation can be regarded as the problem of single carrier frequency offset estimation. In this Letter, an approximate maximum likelihood frequency estimator is proposed. This estimator is efficient at moderate and high SNR's. Compared with other estimators, the proposed estimator is less sensitive to the variance threshold and offers feasible levels of computation complexity. The proposed estimator is suitable for high frequency offset cases and coarse/fine frequency synchronization applications.

  • Azimuthal and Elevation Localization Using Inter-Channel Phase and Level Differences for a Hemispheric Object

    Yoshifumi CHISAKI  Toshimichi TAKADA  Masahiro NAGANISHI  Tsuyoshi USAGAWA  

     
    LETTER-Engineering Acoustics

      Vol:
    E91-A No:10
      Page(s):
    3059-3062

    The frequency domain binaural model (FDBM) has been previously proposed to localize multiple sound sources. Since the method requires only two input signals and uses interaural phase and level differences caused by the diffraction generated by the head, flexibility in application is very high when the head is considered as an object. When an object is symmetric with respect to the two microphones, the performance of sound source localization is degraded, as a human being has front-back confusion due to the symmetry in a median plane. This paper proposes to reduce the degradation of performance on sound source localization by a combination of the microphone pair outputs using the FDBM. The proposed method is evaluated by applying to a security camera system, and the results showed performance improvement in sound source localization because of reducing the number of cones of confusion.

  • Efficient Blind Estimation of MC-CDMA Carrier Frequency Offset

    Ann-Chen CHANG  Chun HSU  Ing-Jiunn SU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:9
      Page(s):
    3004-3008

    This letter presents an efficient blind carrier frequency offset (CFO) estimate approach for multicarrier-code division multiple access (MC-CDMA) system. It can reduce the searching grids required and improve the CFO estimating accuracy compared with conventional searching-based algorithms. Simulation results are provided for illustrating the effectiveness of the proposed blind estimate approach.

  • Low-Capacitance and Fast Turn-on SCR for RF ESD Protection

    Chun-Yu LIN  Ming-Dou KER  Guo-Xuan MENG  

     
    PAPER

      Vol:
    E91-C No:8
      Page(s):
    1321-1330

    With the smaller layout area and parasitic capacitance under the same electrostatic discharge (ESD) robustness, silicon-controlled rectifier (SCR) has been used as an effective on-chip ESD protection device in radio-frequency (RF) IC. In this paper, SCR's with the waffle layout structures are studied to minimize the parasitic capacitance and the variation of the parasitic capacitance within ultra-wide band (UWB) frequencies. With the reduced parasitic capacitance and capacitance variation, the degradation on UWB RF circuit performance can be minimized. Besides, the fast turn-on design on the low-capacitance SCR without increasing the I/O loading capacitance is investigated and applied to an UWB RF power amplifier (PA). The PA co-designed with SCR in the waffle layout structure has been fabricated. Before ESD stress, the RF performances of the ESD-protected PA are as well as that of the unprotected PA. After ESD stress, the unprotected PA is seriously degraded, whereas the ESD-protected PA still keeps the performances well.

  • Quadrature Hartley VCO and Injection-Locked Frequency Divider

    Sheng-Lyang JANG  Chia-Wei CHANG  Sheng-Chien WU  Chien-Feng LEE  Lin-yen TSAI  Jhin-Fang HUANG  

     
    LETTER-Electronic Circuits

      Vol:
    E91-C No:8
      Page(s):
    1371-1374

    Novel low phase noise quadrature voltage-controlled oscillator (QVCO) and quadrature injection locked frequency divider (QILFD) with two coupled Hartley VCOs are proposed and implemented using the standard TSMC 0.18 µm CMOS 1P6M process. The QVCO employs pMOS as the core to reduce the up-conversion of low-frequency device noise to RF phase noise. It uses super-harmonic coupling technique to couple two differential Hartley VCOs and four small-size coupling transistors to set the directivity of quadrature output phases. At the 1.7 V supply voltage, the output phase noise of the QVCO is -124 dBc/Hz at 1 MHz offset frequency from the carrier frequency of 4.12 GHz, and the figure of merit is -185 dBc/Hz. At the supply voltage of 1.7 V, the total power consumption is 13.1 mW. At the supply voltage of 1.5 V, the tuning range of the free-running QILFD is from 2.05 GHz to 2.36 GHz, about 310 MHz, and the locking range of the ILFD is from 3.99 to 5.19 GHz, about 1.20 GHz, at the injection signal power of 0 dBm.

  • On Bit Rate Reduction of Inter-Channel Communication for a Binaural Hearing Assistance System

    Yoshifumi CHISAKI  Ryouji KAWANO  Tsuyoshi USAGAWA  

     
    LETTER

      Vol:
    E91-A No:8
      Page(s):
    2041-2044

    A binaural hearing assistance system based on the frequency domain binaural model has been previously proposed. The system can enhance a signal coming from a specific direction. Since the system utilizes a binaural signal, an inter-channel communication between left and right subsystems is required. The bit rate reduction in inter-channel communication is essential for the detachment of the headset from the processing system. In this paper, the performance of a system which uses a differential pulse code modulation codec is examined and the relationship between the bit rate and sound quality is discussed.

  • A New Frequency Partitioning and Allocation of Subcarriers for Fractional Frequency Reuse in Mobile Communication Systems

    Seung Su HAN  Jongho PARK  Tae-Jin LEE  Hyun Gi AHN  Kyunghun JANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:8
      Page(s):
    2748-2751

    Some OFDMA-based wireless commuication systems, e.g., Wireless Broadband Internet (WiBro) or Worldwide interoperability for Microwave Access (WiMAX), support frequency reuse of 1 to maximize spectral efficiency. One of the efficient methods to reduce co-channel interference (CCI) caused by frequency reuse is fractional frequency reuse (FFR). In this paper, we propose and validate a novel frequency partitioning method and subcarrier assignment mechanism to improve system and individual capacity of mobile systems using FFR.

  • Frequency Offset Estimation with Improved Estimation Range in UWB-OFDM Systems

    Young-Hwan YOU  Byoung-Heon LEE  Jae-Hoon YI  Hyoung-Kyu SONG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E91-A No:7
      Page(s):
    1847-1849

    In this letter, we address a carrier frequency offset (CFO) estimator with a large estimation range for ultra-wideband multi-band orthogonal frequency division multiplexing (UWB MB-OFDM) systems. We find by simulations that the proposed CFO estimator yields an improved estimation range, maintaining the same estimation performance and complexity in comparison with the conventional estimator.

  • Frequency Interleaved Multicarrier CDMA Systems with Two Kinds of Spreading Codes

    Cheolwoo YOU  Sooyong CHOI  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E91-B No:7
      Page(s):
    2214-2223

    We design a unified multicarrier (UMC) system for wideband communication. The proposed scheme can provide an effective and unified method that can implement a wideband CDMA system with high spectrum efficiency and flexibility because of the free selection of system parameters and a double spreading in the time and frequency domains. Also, separation of the spectrums carrying the same data to further ensure the independent fading between subcarriers is performed, that is, subcarriers are interleaved in the frequency domain. This frequency interleaving mitigates the effect of ISI and ICI. We also theoretically analyze the performance of the UMC system by deriving the closed-form solution for probability of bit error in a frequency selective Rayleigh fading channel. The analysis has proved that the UMC system has outperformed the conventional single carrier CDMA system under given conditions.

  • Frequency Spectrum Rotation in Interleaved Frequency Division Multiplexing

    Osamu TAKYU  Masao NAKAGAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:7
      Page(s):
    2357-2365

    Interleaved Frequency Division Multiplexing (IFDM) can achieve high diversity gain as well as establishing orthogonal frequency multiplexing by using a comb-shaped frequency spectrum. In IFDM, as the number of repeat transmissions of a modulated symbol is increased, the comb-shaped frequency spectrum should be narrowed, so that the frequency diversity gain is decreased. In addition, IFDM suffers from inter-path interference imposed on the transmitted signal by multipath fading channel. In this paper, a novel frequency spectrum construction is proposed. In the proposed frequency spectrum construction, the comb-shaped frequency spectrum is frequency-shifted for every modulated symbol. As a result, the frequency spectrum of the frame composed of many modulated symbols is widely spread. In addition, the inter-path interference can be suppressed because the modulated symbol is orthogonal, in the frequency domain, to the following symbol. From the computer simulation, the frequency spectrum rotation can achieve better error rate performance thanks to the increase in frequency diversity gain and suppressing inter-path interference.

  • A Low-Complexity Frequency Offset Insensitive Detection for 2.45 GHz LR-WPAN

    Jung-Su HAN  Hyung-Jin CHOI  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E91-B No:7
      Page(s):
    2205-2213

    In this paper, we propose a low-complexity frequency offset insensitive detection method for the 2.45 GHz LR-WPAN demodulator. In IEEE 802.15.4 LR-WPAN (Low-Rate Wireless Personal Area Network) specification, the frequency offset as highest 80 ppm in the 2.45 GHz band is recommended for low-complexity, low-cost, and low-power implementation. The proposed detection method is verified such that the performance is within 2 dB of the optimal coherent detection with low complexity, which is less than half in comparison with conventional detection methods.

  • Multiple-Antenna Receiving and Frequency Domain Equalization in Transmitted-Reference UWB Systems

    Xuewen LIAO  Shihua ZHU  Erlin ZENG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:7
      Page(s):
    2405-2408

    A multiple-antenna receiving and combining scheme is proposed for high-data-rate transmitted-reference (TR) Ultra-Wideband (UWB) systems. The nonlinearity of the inter-symbol interference (ISI) model is alleviated via simple antenna combining. Under the simplified ISI model, frequency domain equalization (FDE) is adopted and greatly reduces the complexity of the equalizer. A simple estimation algorithm for the simplified ISI model is presented. Simulation results demonstrate that compared to the single receive antenna scheme, the proposed method can obtain a significant diversity gain and eliminate the BER floor effect. Moreover, compared to the complex second-order time domain equalizer, FDE showed better performance robustness in the case of imperfect model estimation.

  • Design of a High-Precision DDS-Based Configurable Clock Generator

    Hsin-Chuan CHEN  

     
    PAPER-Integrated Electronics

      Vol:
    E91-C No:7
      Page(s):
    1151-1157

    Configurable clock is necessary for many applications such as digital communication systems, however, using the conventional direct digital frequency synthesizer (DDS) as a pulse or clock generator may cause jitter problems. People usually employ phase-interpolation approaches to generate a pulse or clock with correct time intervals. This work proposes a new phase-interpolation DDS scheme, which uses the output of the phase accumulator to provide an initial voltage on an integration capacitor by pre-charging in the first phase, and then performs integration operation on the same integration capacitor in the second phase. By using single capacitor integration, the instability of the delay generator existed in the phase-interpolation DDS can be avoided, and the impact caused by capacitance error in the circuit implementation also can be reduced. Furthermore, without ROM tables, the proposed DDS using pre-charging integration not only reduces the spurious level of the clock output, but also has a low hardware complexity.

  • On Performance of Clustering-Based Limited Feedback Beamforming in Multiple-Antenna OFDM Systems

    Erlin ZENG  Shihua ZHU  Xuewen LIAO  Zhimeng ZHONG  Zhenjie FENG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E91-A No:7
      Page(s):
    1850-1853

    Prior studies on limited feedback (LFB) beamforming in multiple-antenna orthogonal frequency division multiplexing (OFDM) have resorted to Monte-Carlo simulations to evaluate the system performance. This letter proposes a novel analytical framework, based on which the averaged signal-to-noise ratio and the ergodic capacity performance of clustering-based LFB beamforming in multiple-antenna OFDM systems are studied. Simulations are also provided to verify the analysis.

  • Novel SLM Scheme with Low-Complexity for PAPR Reduction in OFDM System

    Chua-Yun HSU  Hsin-Chieh CHAO  

     
    PAPER-Digital Signal Processing

      Vol:
    E91-A No:7
      Page(s):
    1689-1696

    Orthogonal frequency-division multiplexing (OFDM) is an attractive transmission technique for high-bit-rate communication systems. One major drawback of OFDM is the high peak-to-average power ratio (PAPR) of the transmitted signal. This study introduces a low-complexity selected mapping (SLM) OFDM scheme based on discrete Fourier transform (DFT) constellation-shaping. The DFT-based constellation-shaping algorithm applied with conventional SLM scheme usually requires a bank of DFT-shaping matrices to generate low-correlation constellation sequences and a bank of inverse fast Fourier transforms (IFFTs) to generate a set of candidate transmission signals, and this process usually results in high computational complexity. Therefore, a sparse matrix algorithm with low-complexity is proposed to replace the IFFT blocks and the DFT-shaping blocks in the proposed DFT constellation-shaping SLM scheme. By using the proposed sparse matrix, the candidate transmission signal with the lowest PAPR can be achieved with lower complexity than that of the conventional SLM scheme. The complexity analysis of the proposed algorithm shows great an improvement in the reduction of the number of multiplications. Moreover, this new low-complexity technique offers a PAPR that is significantly lower than that of the conventional SLM without any loss in terms of energy and spectral efficiency.

641-660hit(1407hit)