The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] frequency(1407hit)

661-680hit(1407hit)

  • Frequency Spectrum Rotation in Interleaved Frequency Division Multiplexing

    Osamu TAKYU  Masao NAKAGAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:7
      Page(s):
    2357-2365

    Interleaved Frequency Division Multiplexing (IFDM) can achieve high diversity gain as well as establishing orthogonal frequency multiplexing by using a comb-shaped frequency spectrum. In IFDM, as the number of repeat transmissions of a modulated symbol is increased, the comb-shaped frequency spectrum should be narrowed, so that the frequency diversity gain is decreased. In addition, IFDM suffers from inter-path interference imposed on the transmitted signal by multipath fading channel. In this paper, a novel frequency spectrum construction is proposed. In the proposed frequency spectrum construction, the comb-shaped frequency spectrum is frequency-shifted for every modulated symbol. As a result, the frequency spectrum of the frame composed of many modulated symbols is widely spread. In addition, the inter-path interference can be suppressed because the modulated symbol is orthogonal, in the frequency domain, to the following symbol. From the computer simulation, the frequency spectrum rotation can achieve better error rate performance thanks to the increase in frequency diversity gain and suppressing inter-path interference.

  • A New Blind 2D-RAKE Receiver Based on CMA Criteria for Spread Spectrum Systems Suitable for Software Defined Radio Architecture

    Kei TAKAYAMA  Yukihiro KAMIYA  Takeo FUJII  Yasuo SUZUKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:6
      Page(s):
    1906-1913

    Spread Spectrum (SS) has been widely used for various wireless systems such as cellular systems, wireless local area network (LAN) and so on. Using multiple antennas at the receiver, two-dimensional (2D) RAKE is realized over the time- and the space-domain. However, it should be noted that the 2D-RAKE receiver must detect the bit timing prior to the RAKE combining. In case of deep fading, it is often difficult to detect it due to low signal-to-noise power ratio (SNR). To solve this problem, we propose a new blind 2D-RAKE receiver based on the constant modulus algorithm (CMA). Since it does not need a priori bit timing detection, it is possible to compensate frequency selective fading even in very low SNR environments. The proposed method is particularly suitable for the software defined radio (SDR) architecture. The performance of the proposed method is investigated through computer simulations.

  • Compensation Effect of Quasi-Inverse Filter (QIF) on Frequency Characteristic Distortion in Wideband Systems

    Mitoshi FUJIMOTO  Haiyan ZHAO  Toshikazu HORI  

     
    PAPER-Antennas

      Vol:
    E91-B No:6
      Page(s):
    1783-1790

    High-speed wireless communication systems have attracted much attention in recent years. To achieve a high-speed wireless communication system that utilizes an ultra-wide-frequency band, a broadband antenna is required. However, it is difficult to obtain an antenna that has uniform characteristics in a broad frequency band. Moreover, propagation characteristics are distorted in a multi-path environment. Thus, the communication quality tends to degrade due to the distortion in the frequency characteristics of the wideband communication system. This paper proposes a quasi-inverse filter (QIF) to improve the compensation effect for the transmitter antenna. Furthermore, we propose a method that employs the newly developed QIF that compensates for frequency characteristic distortion. We evaluate different configurations for the compensation system employing a pre-filter and post-filter in the wideband communication system. The effectiveness of the QIF in the case of severe distortion is verified by computer simulation. The proposed method is applied to a disc monopole antenna as a concrete example of a broadband antenna, and the compensation effect for the antenna is indicated.

  • Spatial Sensitivity of Capacitors in Distributed Resonators and Its Application to Fine and Wide Frequency Tuning Digital Controlled Oscillators

    Win CHAIVIPAS  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E91-C No:6
      Page(s):
    918-927

    Analysis of resonance frequency in shorted transmission lines with inserted capacitor has been made. The analysis shows a resonance frequency dependence on capacitance position on a shorted transmission line. Two analysis methods are presented to predict the resonance frequency and understand how the inserted capacitor affects the resonance frequency of the shorted transmission line. Using this knowledge we propose a new structure for digital controlled oscillators utilizing the capacitance's sensitivity dependence on position of the shorted transmission line to increase the frequency resolution. A 9 GHz transmission line based digital controlled oscillator was designed and fabricated as a proof of concept. Measured results show that more than 100 times frequency step resolution increase is possible utilizing the same tuning capacitor size located at different points on the transmission line.

  • Iterative Overlap FDE for Multicode DS-CDMA

    Kazuaki TAKEDA  Hiromichi TOMEBA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:6
      Page(s):
    1942-1951

    Recently, a new frequency-domain equalization (FDE) technique, called overlap FDE, that requires no GI insertion was proposed. However, the residual inter/intra-block interference (IBI) cannot completely be removed. In addition to this, for multicode direct sequence code division multiple access (DS-CDMA), the presence of residual inter-chip interference (ICI) after FDE distorts orthogonality among the spreading codes. In this paper, we propose an iterative overlap FDE for multicode DS-CDMA to suppress both the residual IBI and the residual ICI. In the iterative overlap FDE, joint minimum mean square error (MMSE)-FDE and ICI cancellation is repeated a sufficient number of times. The bit error rate (BER) performance with the iterative overlap FDE is evaluated by computer simulation.

  • Frequency-Domain QR-Decomposed and Equalized MLD for Single-Carrier MIMO Systems over Multipath Fading Channels

    Tetsuhiko MIYATANI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:6
      Page(s):
    2058-2062

    This letter describes a new QR-decomposition maximum likelihood detector that is combined with frequency-domain equalization for single-carrier transmission based multiple-input multiple-output systems. By utilizing the equalized substreams to adjust the frequency selectivity in corresponding substreams in subsequent stages, the packet error rate performances of the proposed detector is superior to that of the minimum mean squared error receiver by a factor of the receive antenna diversity gain.

  • Antennas for Ubiquitous Sensor Network Open Access

    Kihun CHANG  Young Joong YOON  

     
    INVITED PAPER

      Vol:
    E91-B No:6
      Page(s):
    1697-1704

    Recent advancements in the ubiquitous sensor network field have brought considerable feasibility to the realization of a ubiquitous society. A ubiquitous sensor network will enable the cooperative gathering of environmental information or the detection of special events through a large number of spatially distributed sensor nodes. Thus far, radio frequency identification (RFID) as an application for realizing the ubiquitous environment has mainly been developed for public and industrial systems. To this end, the most existing applications have demanded low-end antennas. In recent years, interests of ubiquitous sensor network have been broadened to medical body area networks (BAN), wireless personal area networks (WPAN), along with ubiquitous smart worlds. This increasing attention toward in ubiquitous sensor network has great implications for antennas. The design of functional antennas has received much attention because they can provide various kinds of properties and operation modes. These high-end antennas have some functions besides radiation. Furthermore, smart sensor nodes equipped with cooperated high-end antennas would allow them to respond adaptively to environmental events. Therefore, some design approaches of functional antennas with sensing and reconfigurability as high-end solution for smart sensor node, as well as low-end antennas for mobile RFID (mRFID) and SAW transponder are presented in this paper.

  • An Analysis of Antenna Integrated THz Oscillator Using a Negative Differential Resistance Transistor

    Katsumi FURUYA  Takeyoshi SUGAYA  Kazuhiro KOMORI  Masahiro ASADA  

     
    PAPER-Antennas

      Vol:
    E91-B No:6
      Page(s):
    1800-1805

    As THz wave has the advantages of enough resolution and penetration to materials, it has been examined to be used for the imaging system. The propagation distance of THz wave is limited to be short. That is also the advantage for application to the indoor wireless communication etc. For the achievement of the ultra-high frequency oscillator (and concurrently transmitter) device, the properties of small, electronic excitation, the antenna constructed and being on the wafer are important. For the purpose, the Negative differential resistance Dual channel transistor (NDR-DCT) proposed by AIST is utilized. In this paper, as an initial theoretical analysis, we simulated the oscillation frequency of this device at about 100 GHz-1THz within the Terahertz band on which the above applications was expected. The equivalent circuit model of NDR-DCT was shown based on the analogy with the resonant tunnelling diode (RTDs), and the antenna as the resonance circuit part was designed by the numerical analysis. The possibility of the THz oscillation of this device was confirmed. The slit reflector that we proposed can realize the slot antenna on the device effectively and is suitable for three terminal structure semiconductor. its manufacturing is relatively easy.

  • On the Practical Design of Small Terminal Antennas for Mobile Applications Open Access

    Anja K. SKRIVERVIK  Marta MARTINEZ-VAZQUEZ  Juan R. MOSIG  

     
    INVITED PAPER

      Vol:
    E91-B No:6
      Page(s):
    1689-1696

    Mobile communication have become an important part of telecommunications. Original applications like paging, mobile phones or GPS have shown a tremendous growth, and new applications are emerging every day: tagging, wireless computer links, wireless microphones, remote control, wireless multimedia links, satellite mobile phones, wireless internet. Mobile means light, small, with low energy consumption and appealing designs. Technology has evolved very fast to satisfy these needs in rapidly growing markeds: chips are becoming smaller, consume less current, are more efficient and perform more complex operations. The antennas however have not experienced the same evolution, as the size of an antenna is mainly dictated by the frequency band it has to transmit or receive. Thus, the art of antenna miniaturization is an art of compromise: one has to design the smallest possible antenna, which is still suitable for a given application regarding its radiation characteristics. Or in other words, one looks for the best compromise between volume, bandwidth and efficiency. In this paper, we will go through classical design techniques, starting from ultra small antennas and going UWB antennas over multiband designs.

  • A Low Distortion and Low Noise Differential Amplifier Suitable for 3G LTE Applications Using the Even- and Odd-Mode Impedance Differences of a Bias Circuit

    Toshifumi NAKATANI  Koichi OGAWA  

     
    PAPER

      Vol:
    E91-C No:6
      Page(s):
    844-853

    A low distortion and low noise differential amplifier using the difference between the even- and odd-mode impedances is proposed. In order to realize an amplifier with high OIP3 and low NF characteristics, the impedance of the bias circuit should be low (<300 Ω) at the difference frequency and high (>4 kΩ) at the carrier frequency. Although the frequency response of the bias circuit impedance can only meet these conditions with difficulty, owing to the 20 MHz Tx signal bandwidth for 3G LTE, the proposed amplifier can achieve the impedance difference using the properties of a differential configuration where the difference frequency signal is the even-mode and the carrier frequency is the odd-mode. It has been demonstrated that the NF of the proposed amplifier, which has been fabricated in 0.18 µm SiGe BiCMOS technology operating at 2.14 GHz, can be kept to 1.6 dB or less and an OIP3 of 9.0 dBm can be achieved, which is 3 dB higher than that of a conventional amplifier, in the condition where the power gain is greater than 18 dB.

  • Performance of Multiband OFDM Systems with Extra Diversity

    Jee-Hyun KIM  Sang-Tae KIM  Hyoung-Kyu SONG  Young-Hwan YOU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E91-A No:5
      Page(s):
    1293-1295

    This letter presents the performance of ultra-wideband multi-band orthogonal frequency division multiplexing (UWB MB-OFDM) systems with an extra diversity. To fully obtain diversity gain in the current MB-OFDM system when a time-domain spreading (TDS) is adopted, two consecutive OFDM symbols are designed to be cyclic shifted against each other. Simulation results indicate that the MB-OFDM system using additional frequency diversity outperforms conventional MB-OFDM system.

  • Variable Cutoff Frequency Pre-Modulation Filter for PCM/FM Transmission System

    Sang-Rae LEE  Sung-Woong RA  

     
    PAPER-Devices/Circuits for Communications

      Vol:
    E91-B No:5
      Page(s):
    1387-1396

    The purpose of this study is to design, analyze and calibrate a pre-modulation filter with a variable cutoff frequency property for the PCM/FM transmission system. The effect of the pre-modulation filter reduces the energy contained in the sidebands of the modulated carrier. Most existing filters are based on a constant cutoff frequency specification. The onboard units of the launch vehicle which have been performed by the functional and environmental tests should not be revised by any hardware modifications from a reliability point of view. In case of the VCU in this paper, it is necessary to change the PCM bit rate and the cutoff frequency of the pre-modulation filter with software programming in order to improve the picture quality in the allowable bandwidth even if the unit has already been manufactured. In addition, the link margin around the satellite separation event is very low because the flight range is more than 2000 km. Under the same RF power condition, the reduction of the transmitting data rate will result in an increase of link margin. For this, the pre-modulation filter should have the variable cutoff frequency property with software programmable function according to 0.7 times the data rate. The variable cutoff frequency pre-modulation filter consists of a digital FIR filter, a DAC system and a tunable 2nd order LPF to meet the magnitude frequency response of an analog 7th order Bessel LPF. The attenuation requirements of three sub-blocks are generated by the frequency response analysis and the linear phase features are also taken into account for each stage. And the analog conversion part including a DAC system and a tunable 2nd order LPF is verified and calibrated using a tone generator.

  • Measurement-Based Performance Evaluation of Coded MIMO-OFDM Spatial Multiplexing with MMSE Spatial Filtering in an Indoor Line-of-Sight Environment

    Hiroshi NISHIMOTO  Toshihiko NISHIMURA  Takeo OHGANE  Yasutaka OGAWA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1648-1652

    The MIMO system can meet the growing demand for higher capacity in wireless communication fields. So far, the authors have reported that, based on channel measurements, uncoded performance of narrowband MIMO spatial multiplexing in indoor line-of-sight (LOS) environments generally outperforms that in non-LOS (NLOS) ones under the same transmit power condition. In space-frequency coded MIMO-OFDM spatial multiplexing, however, we cannot expect high space-frequency diversity gain in LOS environments because of high fading correlations and low frequency selectivity of channels so that the performance may degrade unlike uncoded cases. In this letter, we present the practical performance of coded MIMO-OFDM spatial multiplexing based on indoor channel measurements. The results show that an LOS environment tends to provide lower space-frequency diversity effect whereas the MIMO-OFDM spatial multiplexing performance is still better in the environment compared with an NLOS environment.

  • A Simple Joint Estimation Method of Residual Frequency Offset and Sampling Frequency Offset for DVB Systems

    Ki-Won KWON  Yongsoo CHO  

     
    LETTER-Broadcast Systems

      Vol:
    E91-B No:5
      Page(s):
    1673-1676

    This letter presents a simple joint estimation method for residual frequency offset (RFO) and sampling frequency offset (STO) in OFDM-based digital video broadcasting (DVB) systems. The proposed method selects a continual pilot (CP) subset from an unsymmetrically and non-uniformly distributed CP set to obtain an unbiased estimator. Simulation results show that the proposed method using a properly selected CP subset is unbiased and performs robustly.

  • Frequency-Domain Iterative Parallel Interference Cancellation for Multicode Spread-Spectrum MIMO Multiplexing

    Akinori NAKAJIMA  Deepshikha GARG  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1531-1539

    Very high-speed data services are demanded in the next generation wireless systems. However, the available bandwidth is limited. The use of multi-input multi-output (MIMO) multiplexing can increase the transmission rate without bandwidth expansion. For high-speed data transmission, however, the channel becomes severely frequency-selective and the achievable bit error rate (BER) performance degrades. In our previous work, we proposed the joint use of iterative frequency-domain parallel interference cancellation (PIC) and two-dimensional (2D) MMSE-FDE for the non-spread single-carrier (SC) transmission in a frequency-selective fading channel. The joint use of PIC and 2D MMSE-FDE can effectively suppress the inter-path interference (IPI) and the inter-code interference (ICI), resulting from the channel frequency-selectivity, and the interference from other antennas simultaneously. An iterative PIC with 2D MMSE-FDE has a high computational complexity. In this paper, to well suppress the interference from other antennas while reducing the computational complexity, we propose to replace 2D MMSE-FDE by 1D MMSE-FDE except for the initial iteration stage and to use multicode spread-spectrum (SS) transmission instead of the non-spread SC transmission. The BER performance of the proposed scheme in a frequency-selective Rayleigh fading channel is evaluated by computer simulation to show that the proposed scheme can basically match the BER performance of 2D MMSE-FDE with lower complexity.

  • Frequency-Domain Eigenbeam-SDM and Equalization for Single-Carrier Transmissions

    Kazuyuki OZAKI  Akinori NAKAJIMA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1521-1530

    In mobile communications, the channel consists of many resolvable paths with different time delays, resulting in a severely frequency-selective fading channel. The frequency-domain equalization (FDE) can take advantage of the channel selectivity and improve the bit error rate (BER) performance of the single-carrier (SC) transmission. Recently, multi-input multi-output (MIMO) multiplexing is gaining much attention for achieving very high speed data transmissions with the limited bandwidth. Eigenbeam space division multiplexing (E-SDM) is known as one of MIMO multiplexing techniques. In this paper, we propose frequency-domain SC E-SDM for SC transmission. In frequency-domain SC E-SDM, the orthogonal transmission channels to transmit different data in parallel are constructed at each orthogonal frequency. At a receiver, FDE is used to suppress the inter-symbol interference (ISI). In this paper, the transmit power allocation and adaptive modulation based on the equivalent channel gains after performing FDE are applied. The BER performance of the frequency-domain SC E-SDM in a severe frequency-selective Rayleigh fading channel is evaluated by computer simulation.

  • Studies on an Iterative Frequency Domain Channel Estimation Technique for MIMO-UWB Communications

    Masaki TAKANASHI  Yasutaka OGAWA  Toshihiko NISHIMURA  Takeo OHGANE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1084-1094

    MIMO (Multiple-Input Multiple-Output) technologies have attracted much interest for high-rate and high-capacity wireless communications. MIMO technologies under frequency-selective fading environments (wideband MIMO technologies) have also been studied. A wideband MIMO system is affected by ISI (Inter Symbol Interference) and CCI (Co-Channel Interference). Hence, we need a MIMO signal detection technique that simultaneously suppresses ISI and CCI. The OFDM system and SC-FDE (Single Carrier-Frequency Domain Equalization) techniques are often used for suppressing ISI. By employing these techniques with the ZF (Zero Forcing) or the MMSE (Minimum Mean Square Error) spatial filtering technique, we can cancel both ISI and CCI. To use ZF or MMSE, we need channel state information for calculating the receive weights. Although an LS (Least Square) channel estimation technique has been proposed for MIMO-OFDM systems, it needs a large estimation matrix at the receiver side to obtain sufficient estimation performance in heavy multipath environments. However, the use of a large matrix increases computational complexity and the circuit size. We use frequency domain channel estimation to solve these problems and propose an iterative method for achieving better estimation performance. In this paper, we assume the use of a MIMO-UWB system that employs a UWB-IR (Ultra-Wideband Impulse Radio) scheme with the FDE technique as the wideband wireless transmission scheme for heavy multipath environments, and we evaluate the iterative frequency domain channel estimation through computer simulations and computational complexity calculations.

  • Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization

    Ken TANAKA  Hiromichi TOMEBA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1055-1062

    Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of orthogonal frequency division multiplexing (OFDM) and time-domain spreading, while multi-carrier code division multiple access (MC-CDMA) is a combination of OFDM and frequency-domain spreading. In MC-CDMA, a good bit error rate (BER) performance can be achieved by using frequency-domain equalization (FDE), since the frequency diversity gain is obtained. On the other hand, the conventional orthogonal MC DS-CDMA fails to achieve any frequency diversity gain. In this paper, we propose a new orthogonal MC DS-CDMA that can obtain the frequency diversity gain by applying FDE. The conditional BER analysis is presented. The theoretical average BER performance in a frequency-selective Rayleigh fading channel is evaluated by the Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation of the orthogonal MC DS-CDMA signal transmission.

  • A High-Speed Two-Parallel Radix-24 FFT/IFFT Processor for MB-OFDM UWB Systems

    Jeesung LEE  Hanho LEE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:4
      Page(s):
    1206-1211

    This paper presents a novel high-speed, low-complexity two-parallel 128-point radix-24 FFT/IFFT processor for MB-OFDM ultrawideband (UWB) systems. The proposed high-speed, low-complexity FFT architecture can provide a higher throughput rate and low hardware complexity by using a two-parallel data-path scheme and a single-path delay-feedback (SDF) structure. The radix-24 FFT algorithm is also realized in our processor to reduce the number of complex multiplications. The proposed FFT/IFFT processor has been designed and implemented with 0.18-µm CMOS technology in a supply voltage of 1.8 V. The proposed two-parallel FFT/IFFT processor has a throughput rate of up to 900 Msample/s at 450 MHz while requiring much smaller hardware complexity and low power consumption.

  • Packet Detection for Zero-Padded OFDM Transmission

    Kyu-Min KANG  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E91-B No:4
      Page(s):
    1158-1160

    A packet detection method for zero-padded orthogonal frequency division multiplexing (OFDM) transmission is presented. The proposed algorithm effectively conducts packet detection by employing both an M-sample time delayed cross correlation value, and a received signal power calculated by using the received input samples corresponding to the zero padding (ZP) intervals or less.

661-680hit(1407hit)