The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] frequency(1407hit)

701-720hit(1407hit)

  • Resource Allocations for TDD OFDMA Cellular Systems Considering Traffic Asymmetries

    Seungyoung PARK  Yeonwoo LEE  Sangboh YUN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:12
      Page(s):
    3691-3694

    The time division duplex cellular system can support various downlink and uplink traffic ratios by setting the downlink and uplink transmission periods appropriately. However, it causes severe co-channel interference problem when some cells are active in the downlink while the others are in the uplink [2]. To mitigate this problem, a resource allocation scheme combined with sectorization is proposed for orthogonal frequency division multiple access. Simulations demonstrate that the proposed scheme improves both spectral efficiency and outage performance compared to the conventional allocation schemes.

  • Improved Variant of Pisarenko Harmonic Decomposition for Single Sinusoidal Frequency Estimation

    Kenneth Wing-Kin LUI  Hing-Cheung SO  

     
    LETTER-Digital Signal Processing

      Vol:
    E90-A No:11
      Page(s):
    2604-2607

    It is well known that Pisarenko's frequency estimate for a single real tone can be computed easily using the sample covariance with lags 1 and 2. In this Letter, we propose to use alternative covariance expressions, which are inspired from the modified covariance (MC) frequency estimator, in Pisarenko's algorithm. Computer simulations are included to corroborate the theoretical development of the variant and to demonstrate its superiority over the MC and Pisarenko's methods.

  • Long-Point FFT Processing Based on Twiddle Factor Table Reduction

    Ji-Hoon KIM  In-Cheol PARK  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E90-A No:11
      Page(s):
    2526-2532

    In this paper, we present a new fast Fourier transform (FFT) algorithm to reduce the table size of twiddle factors required in pipelined FFT processing. The table size is large enough to occupy significant area and power consumption in long-point FFT processing. The proposed algorithm can reduce the table size to half, compared to the radix-22 algorithm, while retaining the simple structure. To verify the proposed algorithm, a 2048-point pipelined FFT processor is designed using a 0.18 µm CMOS process. By combining the proposed algorithm and the radix-22 algorithm, the table size is reduced to 34% and 51% compared to the radix-2 and radix-22 algorithms, respectively. The FFT processor occupies 1.28 mm2 and achieves a signal-to-quantization-noise ratio (SQNR) of more than 50 dB.

  • Pilot-Aided Frequency Offset Estimation for Digital Video Broadcasting Systems

    Kyung-Taek LEE  Jong-Soo SEO  

     
    LETTER-Broadcast Systems

      Vol:
    E90-B No:11
      Page(s):
    3327-3329

    This letter introduces a simple way of estimating the integer frequency offset (IFO) of OFDM-based digital video broadcasting (DVB) systems. By modifying the conventional maximum likelihood (ML) estimator to include the multi-stage estimation strategy, the IFO estimator is derived. Simulations indicate that the proposed IFO estimator works robustly when compared to ML estimator.

  • Accurate Channel Identification with Time-Frequency Interferometry for OFDM

    Chang-Jun AHN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E90-A No:11
      Page(s):
    2641-2645

    In OFDM systems, the pilot signal averaging channel estimation is generally used to identify the channel state information (CSI). In this case, large pilot symbols are required for obtaining an accurate CSI. As a result, the total transmission rate is degraded due to large number of pilot symbols transmission. To reduce this problem, in this paper, we propose time-frequency interferometry (TFI) for OFDM to achieve an accurate CSI.

  • A Novel Modulation with Parallel Combinatory and High Compaction Multi-Carrier Modulation

    Yafei HOU  Masanori HAMAMURA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E90-A No:11
      Page(s):
    2556-2567

    In this paper, we propose a new modulation named parallel combinatory/high compaction multi-carrier modulation (PC/HC-MCM) using the techniques of parallel combinatory orthogonal frequency division multiplexing (PC-OFDM) and high compaction multi-carrier modulation (HC-MCM). Two types of PC/HC-MCM systems, which are named as modulated PC/HC-MCM system and (unmodulated) PC/HC-MCM system, can be designed. The modulated PC/HC-MCM system achieves better bit-error rate (BER) performance than that of HC-MCM system with equal bandwidth efficiency (BWE). The PC/HC-MCM system can obtain the better peak-to-average power ratio (PAPR) characteristics by selecting appropriate constellation for each subcarrier. On the other hand, since PC/HC-MCM can divide the PC-OFDM symbol duration into multiple time-slots, the advantages of frequency hopping (FH) can be applied in the PC/HC-MCM system. Therefore, we also combine the PC/HC-MCM and frequency hopping multiple access (FHMA) to propose a novel multiple access (MA) system. It can simultaneously transmit multiple users' data within one symbol duration of PC-OFDM.

  • Broadband MIMO Communication Systems Using Spatio-Temporal Processing in Transmitter and Receiver Sides

    Tetsuki TANIGUCHI  Hoang Huy PHAM  Nam Xuan TRAN  Yoshio KARASAWA  

     
    PAPER-MIMO

      Vol:
    E90-A No:11
      Page(s):
    2431-2438

    This paper presents a mathematically simple method of maximum SINR (Signal to Interference plus Noise Ratio) design of broadband MIMO (Multiple Input Multiple Output) communication systems adopting TDL (Tapped Delay Line) structure for spatio-temporal processing in both transmitter and receiver sides. The weight vectors in both ends are determined alternately, optimizing one side by fixing the other, and this operation is repeated until the SINR converges. The performance of MIMO systems using the proposed approach is investigated through computer simulations, and it is demonstrated that, though it requires high computational cost, the TDL structure brings high ability to mitigate the influence of frequency selective fading, particularly when the duration of the delay profile is long. Moreover, experimental results show that the equable distribution of the resources (weights and delay units) to both arrays is better choice than the concentration of them to one side of the transmitter or receiver.

  • Pseudo Eigenbeam-Space Division Multiplexing (PE-SDM) in Frequency-Selective MIMO Channels

    Hiroshi NISHIMOTO  Toshihiko NISHIMURA  Takeo OHGANE  Yasutaka OGAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:11
      Page(s):
    3197-3207

    In a frequency-selective multiple-input multiple-output (MIMO) channel, the optimum transmission is achieved by beamforming with eigenvectors obtained at each discrete frequency point, i.e., an extension of eigenbeam-space division multiplexing (E-SDM). However, the calculation load of eigenvalue decomposition at the transmitter increases in proportion to the number of frequency points. In addition, frequency-independent eigenvectors increase the delay spread of the effective channel observed at the receiver. In this paper, we propose a pseudo eigenvector scheme for the purpose of mitigating the calculation load and maintaining frequency continuity (or decreasing the delay spread). First, we demonstrate that pseudo eigenvectors reduce the delay spread of the effective channels with low computational complexity. Next, the practical performance of the pseudo E-SDM (PE-SDM) transmission is evaluated. The simulation results show that PE-SDM provides almost the same or better performance compared with E-SDM when the receiver employs a time-windowing-based channel estimation available in the low delay spread cases.

  • A Novel Single Carrier Space-Time Block-Coded CDMA System with Iterative Receiver

    Der-Feng TSENG  Wei-Yu LAI  

     
    PAPER-CDMA

      Vol:
    E90-A No:11
      Page(s):
    2369-2376

    In this paper, we employ time-reversal space-time block coding (TR-STBC) in single-carrier direct sequence code-division multiple access (DS-CDMA) block transmission in the presence of multiple access interference (MAI) as well as intersymbol interference (ISI), which is subject to fairly long delay spread. We introduce the transmission rate improvement by capitalizing on the assignment of additional spreading codes to each user so as to expand the cardinality of space-time code matrix with no sacrifice of diversity order. Given perfect channel state information at the receiver, a simple linear frequency-domain interference suppression scheme on a basis of symbol-by-symbol processing is developed under certain circumstances. A "turbo principle" receiver is facilitated by exploiting the serially concatenated structure at the transmitter to further enhance system performance. Simulation results justify the efficacy of our proposed system and also present performance comparisons with some existing systems in terms of bit error rate (BER).

  • Low-Complexity Iterative Receiver for Coded MIMO-OFDM Systems Based on PIC-MRC

    Wenfeng LIN  Chen HE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:11
      Page(s):
    3274-3277

    A novel low-complexity iterative receiver for coded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is proposed in this letter. The iterative receiver uses the parallel interference cancellation (PIC)-maximum ratio combining (MRC) detector for MIMO-OFDM detection, which is a popular alternative to the minimum mean square error (MMSE) detector due to its lower computational complexity. However, we have found that the conventional PIC-MRC detector tends to underestimate the magnitude of its output log likelihood ratios (LLRs). Based on this discovery, we propose to multiply these LLRs by a constant factor, which is optimized according to the extrinsic information transfer (EXIT) chart of the soft-in soft-out (SISO) detector. Simulation results show that the proposed scheme significantly improves the performance of the PIC-MRC-based receiver with little additional cost in computational complexity, allowing it to closely approach the performance of receiver using the much more complex MMSE detector.

  • Pre- and Post-Equalization and Frequency Diversity Combining Methods for Block Transmission with Cyclic Prefix

    Yuki YOSHIDA  Kazunori HAYASHI  Hideaki SAKAI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:10
      Page(s):
    2874-2883

    This paper proposes low-complexity pre- and post-frequency domain equalization and frequency diversity combining methods for block transmission schemes with cyclic prefix. In the proposed methods, the equalization and diversity combining are performed simultaneously in discrete frequency domain. The weights for the proposed equalizer and combiner are derived based on zero-forcing and minimum-mean-square error criteria. We demonstrate the performance of the proposed methods, including bit-error rate performance and peak-to-average power ratios of the transmitted signal, via computer simulations.

  • Frequency Offset Estimation Scheme in the Presence of Time-Varying DC Offset for OFDM Direct Conversion Receivers

    Mamiko INAMORI  Anas Muhamad BOSTAMAM  Yukitoshi SANADA  Hideki MINAMI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:10
      Page(s):
    2884-2890

    This paper presents a frequency offset estimation scheme for Orthogonal Frequency Division Multiplex (OFDM) direct conversion receivers. The key idea is to use a differential filter for reduction of DC offset. Frequency offset is estimated in the presence of time-varying DC offset. In order to overcome the varying DC levels under automatic gain control (AGC) circuits, a threshold level is set for the output of the differential filter. The proposed compensation scheme offers superior frequency offset estimation when compared with a conventional scheme with a high pass filter.

  • On Training-Symbol Design and Efficient Synchronization in OFDM Systems

    Heon HUH  James V. KROGMEIER  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E90-B No:10
      Page(s):
    2940-2943

    We show the equivalence between the conventional frame synchronization in single-carrier systems and integer part estimation of frequency offset in OFDM systems and propose an efficient synchronization scheme. The proposed scheme achieves both OFDM symbol/frame timing and frequency offset estimation with only one well-designed OFDM training symbol, while previous synchronization algorithms need two OFDM training symbols at least. Numerical analysis shows that the proposed frequency estimator nearly achieves the Cramér-Rao lower bound for the variance of the frequency offset estimate, despite the reduction in the training sequence length.

  • Modeling and Simulation of ΔΣ Fractional-N PLL Frequency Synthesizer in Verilog-AMS

    Zhipeng YE  Wenbin CHEN  Michael Peter KENNEDY  

     
    PAPER-Nonlinear Circuits

      Vol:
    E90-A No:10
      Page(s):
    2141-2147

    A Verilog-AMS model of a fractional-N frequency synthesizer is presented that is capable of predicting spurious tones as well as noise and jitter performance. The model is based on a voltage-domain behavioral simulation. Simulation efficiency is improved by merging the voltage controlled oscillator (VCO) and the frequency divider. Due to the benefits of Verilog-AMS, the ΔΣ modulator which is incorporated in the synthesizer is modeled in a fully digital way. This makes it accurate enough to evaluate how the performance of the frequency synthesizer is affected by cyclic behavior in the ΔΣ modulator. The spur-minimizing effect of an odd initial condition on the first accumulator of the ΔΣ modulator is verified. Sequence length control and its effect on the fractional-N frequency synthesizer are also discussed. The simulated results are in agreement with prior published data on fractional-N synthesizers and with new measurement results.

  • Maximum Likelihood Estimation of Integer Frequency Offset in OFDM Systems

    Geun Bae KIM  Dongweon YOON  Sang Kyu PARK  Kyunghwan CHA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:10
      Page(s):
    2980-2982

    This letter presents a simple maximum likelihood (ML) estimation method with one training symbol for the integer frequency offset (IFO) in orthogonal frequency division multiplexing (OFDM) systems. We show that the proposed method performs better than the conventional one through Monte Carlo simulations.

  • Subband Adaptive Array for MIMO-STBC CDMA System

    Nordin Bin RAMLI  Tetsuki TANIGUCHI  Yoshio KARASAWA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E90-A No:10
      Page(s):
    2309-2317

    This paper presents interference suppression using a subband adaptive array (SBAA) for uplink space-time block coding (STBC) code division multiple access (CDMA) under a frequency selective fading (FSF) channel. The proposed scheme utilizes CDMA with STBC and a receive array antenna with SBAA processing at the receiver. The received signal is converted into the frequency domain before despreading and adaptive processing is performed for each subband. A novel SBAA construction is introduced to process CDMA signals based on STBC. To improve the performance of the proposed scheme, we evaluate STBC-SBAA using spreading codes cyclic prefix (CP). Simulation results demonstrate an improved performance of the proposed system for single and multiuser environments compared to competing related techniques.

  • Amplitude Response Curves of Frequency-Locked Rotations

    Yoshihiko SUSUKI  Yoshisuke UEDA  

     
    LETTER-Nonlinear Phenomena and Analysis

      Vol:
    E90-A No:10
      Page(s):
    2250-2252

    This letter studies frequency-locked rotations in a phase-locked loop (PLL) circuit as FM demodulator. A rotation represents a desynchronized steady state in the PLL circuit and is regarded as another type of self-excited oscillations with natural rotation frequencies. The rotation frequency can be locked at driving frequencies of modulation signals. This letter shows response curves for harmonic amplitude of frequency-locked rotations. They have several different features from response curves of van der Pol oscillator.

  • Iterative Cyclic Prefix Reconstruction for Precoded SC-FDE

    Taewon HWANG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E90-B No:9
      Page(s):
    2447-2455

    A cyclic prefix reconstruction scheme is proposed for precoded single-carrier systems with frequency-domain equalization (SC-FDE) that employ insufficient length of cyclic prefix. For SC-FDE, cyclic prefix is employed to facilitate frequency-domain equalization at the receiver. Since inserting cyclic prefix incurs a loss in bandwidth-utilization efficiency, it is desirable to limit the length of cyclic prefix for SC-FDE. This paper designs the energy spreading transform (EST), a precoder that enables iterative reconstruction of missing cyclic prefix. The performance of the proposed scheme is shown to be close to that of SC-FDE with enough length of cyclic prefix.

  • New Robust Beamforming Method for Frequency Offsets in Uplink Multiuser OFDM-MIMO

    Yasushi TAKATORI  Riichi KUDO  Atsushi OHTA  Koichi ISHIHARA  Kentaro NISHIMORI  Shuji KUBOTA  

     
    PAPER-Smart Antennas

      Vol:
    E90-B No:9
      Page(s):
    2312-2320

    Multiuser multiple input multiple output (MU-MIMO) systems are attracting attention due to their frequency efficiency. However, in uplink MU-MIMO systems, different frequency offsets among multiple mobile stations (MSs) significantly degrade the transmission quality, especially when orthogonal frequency division multiplexing (OFDM) is used. In this paper, the influence of these frequency offsets is first analyzed in a frequency selective fading environment. Numerical analysis shows that an error floor occurs in the bit error rate and the influence of the frequency offset becomes larger in short delay spread environments. To overcome this problem, a new beamforming method is proposed to compensate for the frequency offset by introducing an auto frequency controller after frequency-space equalization in each data stream. The effect of the proposed method is evaluated in a frequency selective fading environment by computer simulations and measured results.

  • Application of Microwave and Millimeter-Wave Circuit Technologies to InGaP-HBT ICs for 40-Gbps Optical Transmission Systems

    Ken'ichi HOSOYA  Yasuyuki SUZUKI  Yasushi AMAMIYA  Zin YAMAZAKI  Masayuki MAMADA  Akira FUJIHARA  Masafumi KAWANAKA  Shin'ichi TANAKA  Shigeki WADA  Hikaru HIDA  

     
    PAPER-Active Devices/Circuits

      Vol:
    E90-C No:9
      Page(s):
    1685-1694

    Application of microwave and millimeter-wave circuit technologies to InGaP-HBT ICs for 40-Gbps optical-transmission systems is demonstrated from two aspects. First, ICs for various important functions -- amplification of data signals, amplification, frequency doubling, and phase control of clock signals -- are successfully developed based on microwave and millimeter-wave circuit configurations mainly composed of distributed elements. A distributed amplifier exhibits ≥164-GHz gain-bandwidth product with low power consumption (PC) of 71.2 mW. A 20/40-GHz-band frequency doubler achieves wideband performance (40%) with low PC (26 mW) by integrating a high-pass filter and a buffer amplifier (as a low-pass filter). A compact 40-GHz analog phase shifter, 20- and 40-GHz-band clock amplifiers with low PC are also realized. Second, a familiar concept in microwave-circuit design is applied to a high-speed digital circuit. A new approach -- inserting impedance-transformer circuits -- to enable 'impedance matching' in digital ICs is successfully applied to a 40-Gbps decision circuit to prevent unwanted gain peaking and jitter increase caused by transmission lines without sacrificing chip size.

701-720hit(1407hit)