The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] frequency(1407hit)

1001-1020hit(1407hit)

  • Macromodel Generation for Hybrid Systems Consisting of Electromagnetic Systems and Lumped RLC Circuits Based on Model Order Reduction

    Takayuki WATANABE  Hideki ASAI  

     
    PAPER

      Vol:
    E87-A No:2
      Page(s):
    398-405

    This paper describes an efficient method for the macromodel generation of hybrid systems which are composed of electromagnetic systems and lumped RLC circuits. In our method, electromagnetic systems are formulated as finite-difference frequency-domain (FDFD) equations, and RLC circuits are formulated as nodal equations. Therefore, unlike the partial-element equivalent-circuit (PEEC) method, the technique presented here does not need any 3-dimensional capacitance and inductance parameter extractions to model interconnects, LSI packages and printed circuit boards. Also the lumped RLC elements can be easily included in the hybrid system of equations, thus it is convenient to model some passive components, such as bypass capacitors. The model order reduction technique is utilized in order to construct macromodels from hybrid system of equations. The accuracy of the proposed method is substantiated with some numerical examples.

  • Adaptive Frequency Hopping for Non-collaborative WPAN Coexistence

    Young-Hwan YOU  Cheol-Hee PARK  Dae-Ki HONG  Min-Chul JU  Sung-Jin KANG  Jin-Woong CHO  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E87-A No:2
      Page(s):
    516-521

    In this letter, we present an adaptive hopping technique for a wireless personal area network (WPAN) system employing a frequency hop spread spectrum (FH/SS). Analytical results based on the closed-form solutions for the aggregate throughput show that the proposed hopping algorithm using two defined hopping criteria is more friendly towards all kinds of interferers and gives an enhanced throughput with a moderate computational complexity.

  • A New Joint Estimation of Channels and the Number of Transmit Antennas for OFDM Systems with Antenna Diversity Employing Walsh Hadamard Codes

    Wichai PONGWILAI  Ryuji KOHNO  Sawasd TANTARATANA  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:2
      Page(s):
    242-256

    We propose a new approach associated with the use of some selected sets of Walsh Hadamard codes for joint estimation of channels and the number of transmit antennas by employing only one OFDM pilot symbol. This allows transmit antenna diversity to be applied in systems which have a limited number of training symbols (preambles), e.g. HIPERLAN/2. The proposed approach does not require any a priori knowledge about the number of transmit antennas, providing flexibility in the number of antennas to be used. In addition, adaptive scheme associated with the proposed approach provides more accurate estimations of the channels. The effectiveness of the proposed approach is evaluated through simulation. Results show that the proposed scheme provides significant improvement over previous channel estimation schemes and has almost the same performance as the ideal system with the full knowledge of the channel state information.

  • FEXT Cancellation Techniques for Multiuser DMT-VDSL Systems

    Jung-Soo WOO  Gi-Hong IM  Kyu-Min KANG  

     
    PAPER-Transmission Systems and Transmission Equipment

      Vol:
    E87-B No:1
      Page(s):
    1-9

    This paper discusses far-end crosstalk (FEXT) cancellation methods for multicarrier transmission system. A system arrangement and its tap update method are proposed when FEXT cancelers and a frequency-domain equalizer (FEQ) are jointly adapted to combat channel intersymbol interference, FEXT, and other additive noise. We present mathematical formulation of minimum mean-square error (MSE) and the optimum tap coefficients for the FEXT cancelers and the FEQ when FEXT cancellation techniques are introduced for multiuser discrete multitone (DMT) based very high-speed digital subscriber line (VDSL) transmission. It is shown that FEXT cancellation enhances the achievable bit rate in FEXT-limited systems. Computer simulation and analytical results show that the performance of jointly adapted FEXT cancelers and an FEQ is better than that of separately adapted FEXT cancelers and an FEQ.

  • Fundamental Frequency Estimation for Noisy Speech Using Entropy-Weighted Periodic and Harmonic Features

    Yuichi ISHIMOTO  Kentaro ISHIZUKA  Kiyoaki AIKAWA  Masato AKAGI  

     
    PAPER-Speech and Hearing

      Vol:
    E87-D No:1
      Page(s):
    205-214

    This paper proposes a robust method for estimating the fundamental frequency (F0) in real environments. It is assumed that the spectral structure of real environmental noise varies momentarily and its energy does not distribute evenly in the time-frequency domain. Therefore, segmenting a spectrogram of speech mixed with environmental noise into narrow time-frequency regions will produce low-noise regions in which the signal-to-noise ratio is high. The proposed method estimates F0 from the periodic and harmonic features that are clearly observed in the low-noise regions. It first uses two kinds of spectrogram, one with high frequency resolution and another with high temporal resolution, to represent the periodic and harmonic features corresponding to F0. Next, the method segments these two kinds of feature plane into narrow time-frequency regions, and calculates the probability function of F0 for each region. It then utilizes the entropy of the probability function as weight to emphasize the probability function in the low-noise region and to enhance noise robustness. Finally, the probability functions are grouped in each time, and F0 is obtained as the frequency with the highest probability of the function. The experimental results showed that, in comparison with other approaches such as the cepstrum method and the autocorrelation method, the developed method can more robustly estimate F0s from speech in the presence of band-limited noise and car noise.

  • A Novel Two-Dimensional (2-D) Defected Ground Array for Planar Circuits

    Hai-Wen LIU  Xiao-Wei SUN  Zheng-Fan LI  Jun-Fa MAO  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E87-C No:1
      Page(s):
    109-112

    This letter presents a novel two-dimensional (2-D) defected ground array (DGA) for planar circuits, which has horizontal and vertical periodicities of defect structure. The defect unit cell of DGA is composed of a Sierpinski carpet structure to improve the effective inductance. Measurements show that the proposed DGA provides steeper cutoff characteristics, lower cutoff frequency, and higher slow-wave factors than the conventional periodic defected ground structure in the same occupied surface.

  • Blind Frequency Offset Estimation for PCC-OFDM Systems

    Jinwen SHENTU  Jean ARMSTRONG  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:1
      Page(s):
    29-35

    This paper presents a blind frequency offset estimation method for Polynomial Cancellation Coded Orthogonal Frequency Division Multiplexing (PCC-OFDM) systems. We have theoretically derived the frequency offset estimator. The estimation exploits the Subcarrier Pair Imbalance (SPI) which is presented in terms of the power difference between two demodulated subcarriers in a PCC-OFDM subcarrier pair. The estimator can be used for high order QAM modulation schemes. In all cases, the estimator has an approximately linear relationship with the frequency offset. The potential application of the estimator in conventional OFDM systems is also investigated in this paper.

  • Double-Image Green's Function Method for CMOS Process Oriented Transmission Lines

    Wenliang DAI  Zhengfan LI  Junfa MAO  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E86-C No:12
      Page(s):
    2504-2507

    A novel double-image Green's function approach is proposed to compute the frequency- dependent capacitance and conductance for the general CMOS oriented transmission lines with one protective layer. The ε-algorithm of Pade approximation is adopted to reduce the time for establishing coefficient matrix in this letter. The parameters gained from this new approach are shown to be in good agreement with the data obtained by the full-wave method and the total charge Green's function method.

  • Representative Frequency for Interconnect R(f)L(f)C Extraction

    Akira TSUCHIYA  Masanori HASHIMOTO  Hidetoshi ONODERA  

     
    PAPER-Parasitics and Noise

      Vol:
    E86-A No:12
      Page(s):
    2942-2951

    This paper discusses the frequency to extract RLC values from interconnects. In circuit design, frequency-independent equivalent circuit is widely used, and many design and analysis techniques based on this equivalent circuit are proposed so far. However in reality, characteristics of interconnects are frequency-dependent. Also pulse waveforms in digital circuits contain multiple frequency components. The frequency used for RLC extraction affects the accuracy of interconnect characterization, and hence careful determination of extraction frequency is critical. We propose a representative frequency for RLC extraction. Conventionally, representative frequencies are determined by input pulse. The proposed method decides the representative frequency based on the interconnect length, whereas conventional representative frequencies are determined by input pulse shape, period and patterns. We verify that the extraction at the proposed frequency provides the most accurate transition waveform against various input signals and interconnect structures in digital circuits.

  • Sensitivity of SNR Degradation of OFDM to Carrier Frequency Offset in Shadowed Two-Path Channels

    Wooncheol HWANG  Hongku KANG  Kiseon KIM  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:12
      Page(s):
    3630-3633

    In this letter, a concise formula for the SNR degradation of OFDM caused by carrier frequency offset is derived by approximations over a shadowed two-path channel, which explicitly shows the sensitivity of SNR degradation to various parameters including the frequency offset. It is shown that, for small frequency offset, the SNR degradation is proportional to the square of the frequency offset and the square of the number of subcarriers. It is also shown that, if Es/N0 is reasonably large, the SNR degradation becomes insensitive to Es/N0, which is contrary to the case of the AWGN channel.

  • Demodulation of Radio Frequency Interference in CMOS Operational Amplifiers

    Franco FIORI  Paolo S. CROVETTI  

     
    PAPER-Electronic Circuits

      Vol:
    E86-C No:11
      Page(s):
    2309-2319

    In this paper a second order Volterra series model of an operational amplifier (opamp) circuit is presented. Such a model is suitable to the investigation of the rectification and demodulation effects of radio frequency (RF) interference superimposed on the nominal input signals and on the power supply voltage of an opamp. On the basis of the new model, some design criteria to improve the immunity of opamps to RF interference are proposed. Model predictions are verified by comparison with experimental test results.

  • Joint Antenna Diversity and Frequency-Domain Equalization for Multi-Rate MC-CDMA

    Fumiyuki ADACHI  Tomoki SAO  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E86-B No:11
      Page(s):
    3217-3224

    For the reception of MC-CDMA signals in a frequency-selective fading channel, frequency-domain equalization is necessary before despreading. In this paper, joint antenna diversity combining and one-tap frequency-domain equalization is considered (simply referred to as the joint antenna diversity & equalization, in this paper). A receiver structure for joint antenna diversity & equalization is presented and the unified weights based on minimum mean square error (MMSE) criterion are found in the presence of multi-users with different spreading factors and transmit powers. For comparison, antenna diversity combining after despreading using MMSE combining (MMSEC) is also considered. The achievable bit error rate (BER) performances with joint antenna diversity & equalization and with antenna diversity after MMSEC despreading in a frequency-selective Rayleigh fading channel are evaluated by computer simulations and compared.

  • On Received Signal Power Distribution of Wideband Signals in a Frequency-Selective Rayleigh Fading Channel

    Fumiyuki ADACHI  Akihito KATO  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:11
      Page(s):
    3340-3343

    A mathematical expression for the received signal power in a severe frequency-selective fading channel is derived. Using the derived expression, the signal power distributions are obtained by Monte-Carlo simulation and compared with the Nakagami m-power distribution. It is found that the power distribution matches well with the Nakagami m-power distribution when the multipath channel has a uniform power delay profile.

  • Enhanced Vibrato Analysis Using Parameter-Optimized Cubic Convolution

    Hee-Suk PANG  

     
    LETTER-Engineering Acoustics

      Vol:
    E86-A No:11
      Page(s):
    2887-2890

    Parameter-optimized cubic convolution is used to accurately analyze the pitch center, rate and extent of vibrato tones. We interpolate the time-tracing fundamental frequencies of vibrato tones using parametric cubic convolution, and analytically estimate the positions and values of the extrema, which are used to analyze the characteristics of the vibrato. The optimal values of α, the parameter of the interpolation kernel, are also shown as a function of the normalized vibrato rates.

  • Fast Algorithm for High Resolution Frequency Estimation of Multiple Real Sinusoids

    Hing Cheun SO  Yuntao WU  

     
    LETTER-Digital Signal Processing

      Vol:
    E86-A No:11
      Page(s):
    2891-2893

    The propagator method (PM) belongs to a class of subspace based methods for direction-of-arrival estimation which only requires linear operations but does not involve any eigendecomposition or singular value decomposition as in common subspace techniques. In this paper, we apply the PM for estimating the frequencies of multiple real sinusoids in noise and a computationally simple as well as high resolution multiple frequency estimation algorithm is developed. The estimation accuracy of the proposed method is contrasted with the conventional MUSIC and Cramer-Rao lower bound under different noise conditions.

  • Electromagnetic Scattering Analysis for Crack Depth Estimation

    Hidenori SEKIGUCHI  Hiroshi SHIRAI  

     
    PAPER

      Vol:
    E86-C No:11
      Page(s):
    2224-2229

    A simple non-destructive depth estimation method for a crack on a metal surface has been proposed. This method is based on our finding that the electromagnetic back scattering from a narrow trough (crack model) on the ground plane causes periodical nulls (dips) as the frequency changes, and the first dip occurs when the depth of the crack becomes nearly one half of the incident wavelength. Dependencies of the crack's aperture and the incident angle have also been studied from rigorous and numerical analyses, and considered as our depth estimation parameters. A simple estimation formula for a crack depth has been derived from these studies. Test measurement has been made to check the accuracy of our estimation formula. Time domain gating process is utilized for isolating the crack scattering spectra buried in the measured frequency RCS data. Tested crack types are a narrow rectangular, a tapered, and a stair approximated crack shapes. It is found that the depth of these cracks can be measured within 3 percent error by our estimation method.

  • Frequency Synchronization Technique for the Multiple-Input Multiple-Output Antenna System

    Mi-Jeong KIM  Kyung-Geun LEE  Hyoung-Kyu SONG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E86-A No:10
      Page(s):
    2710-2712

    Recently, there has been increasing interest in providing high quality and efficient broadband services over wireless and mobile links. Space-time code is designed to exploit multiple-input multiple-output antenna systems and by doing so an enormous increase in the capacity of wireless systems can be achieved. In this letter, a synchronization technique is proposed to improve the performance of multiple-input multiple-output system. The interpolation method is employed to estimate the coarse and fine frequency offset at the same time without additional complexity.

  • Two-Dimensional Device Simulation of 0.05 µm-Gate AlGaN/GaN HEMT

    Yoshifumi KAWAKAMI  Naohiro KUZE  Jin-Ping AO  Yasuo OHNO  

     
    PAPER

      Vol:
    E86-C No:10
      Page(s):
    2039-2042

    DC and RF performances of AlGaN/GaN HEMTs are simulated using a two-dimensional device simulator with the material parameters of GaN and AlGaN. The cut-off frequency is estimated as 205 GHz at the gate length of 0.05 µm and the drain breakdown voltage at this gate length is over 10 V. The values are satisfactory for millimeter wavelength power applications. The use of thin AlGaN layers has key importance to alleviate gate parasitic capacitance effects at this gate length.

  • Adaptive On-Line Frequency Stabilization System for Laser Diodes Based on Genetic Algorithm

    Shintaro HISATAKE  Naoto HAMAGUCHI  Takahiro KAWAMOTO  Wakao SASAKI  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E86-C No:10
      Page(s):
    2097-2102

    We propose a frequency stabilization system for laser diodes (LDs), in which the electrical feedback loop response can be determined using an on-line genetic algorithm (GA) so as to attain lower LD frequency noise power within the specific Fourier frequency range of interest. At the initial stage of the stabilization, the feedback loop response has been controlled through GA, manipulating the proportional gain, integration time, and derivative time of conventional analog PID controller. Individuals having 12-bit chromosomes encoded by combinations of PID parameters have converged evolutionarily toward an optimal solution providing a suitable feedback loop response. A fitness function has been calculated for each individual in real time based on the power spectral density (PSD) of the frequency noise. The performance of this system has been tested by stabilizing a 50 mW visible LD. Long-term (τ > 0.01 s) frequency stability and its repeatability have been improved.

  • RF Performance of Diamond Surface-Channel Field-Effect Transistors

    Hitoshi UMEZAWA  Shingo MIYAMOTO  Hiroki MATSUDAIRA  Hiroaki ISHIZAKA  Kwang-Soup SONG  Minoru TACHIKI  Hiroshi KAWARADA  

     
    INVITED PAPER

      Vol:
    E86-C No:10
      Page(s):
    1949-1954

    RF diamond FETs have been realized on a hydrogen-terminated diamond surface conductive layer. By utilizing the self-aligned gate fabrication process which is effective for the reduction of the parasitic resistance, the transconductance of diamond FETs has been greatly improved. Consequently, the high frequency operation of 22 GHz has been realized in 0.2 µ m gate diamond MISFETs with a CaF2 gate insulator. This value is the highest in diamond FETs and is comparable to the maximum value of SiC MESFETs at present.

1001-1020hit(1407hit)