The search functionality is under construction.

Keyword Search Result

[Keyword] higher order(28hit)

1-20hit(28hit)

  • A Novel Quad-Band Branched Monopole Antenna with a Filter Suppressing Higher Order Modes

    Shingo YAMAURA  Kengo NISHIMOTO  Yasuhiro NISHIOKA  Ryosuke KOBAYASHI  Takahiro INO  Yoshio INASAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/05/16
      Vol:
    E106-B No:10
      Page(s):
    938-948

    This paper proposes a novel quad-band branched monopole antenna with a filter. The proposed antenna has a simple configuration in which branch-elements are added to a basic configuration consisting of a mast and dielectric wires. The antenna is characterized by performances such as wideband impedance matching, gain stabilization, and gain enhancement. Wideband impedance characteristics satisfying the voltage standing ratio of less than 2 are obtained by exciting a parallel resonance at the lowest band and multi-resonance at high bands. The filter suppressing higher order modes is used for gain stabilization, so that averaged gains above 5dBi are obtained at the quad-band. The antenna has a high gain of 11.1dBi because the branch-elements work as an end-fire array antenna at the highest band. Furthermore, it is clarified that an operating frequency is switched by using a variable bandpass filter at the lowest band. Last, a scale model of the antenna is fabricated and measured, then the effectiveness of the proposed antenna is demonstrated.

  • Orthogonalized Directional MIMO Transmission Using Higher Order Mode Microstrip Antennas

    Maki ARAI  Tomohiro SEKI  Ken HIRAGA  Kazumitsu SAKAMOTO  Hideki TOSHINAGA  Tadao NAKAGAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    48-57

    Multiple-input multiple-output (MIMO) technology is a useful means of achieving the higher data rates needed in the latest wireless devices. However, weighting calculations for MIMO transmission become complicated when there are a large number of antennas. Thus, developing a simpler way to transmit and receive multiple streams is an idea worth considering. With this in mind, we propose a spatial division method using orthogonal directivities formed by using higher order modes of rectangular microstrip antennas. Each of them is formed by one antenna element so that channels are orthogonalized only by antennas. We verify antenna radiation characteristics by using higher order mode microstrip antennas and confirm that orthogonal directivities are obtained with them. Measurement of two stream transmission reveals that the method achieves almost the same channel capacity as that of an eigenmode-beamforming method because of the high multiplexing gain it achieves.

  • A New Higher Order Differential of CLEFIA

    Naoki SHIBAYAMA  Toshinobu KANEKO  

     
    PAPER-Symmetric Key Based Cryptography

      Vol:
    E97-A No:1
      Page(s):
    118-126

    CLEFIA is a 128-bit block cipher proposed by Shirai et al. at FSE2007. It has been reported that CLEFIA has a 9-round saturation characteristic, in which 32bits of the output of 9-th round 112-th order differential equals to zero. By using this characteristic, a 14-round CLEFIA with 256-bit secret key is attacked with 2113 blocks of chosen plaintext and 2244.5 times of data encryption. In this paper, we focused on a higher order differential of CLEFIA. This paper introduces two new concepts for higher order differential which are control transform for the input and observation transform for the output. With these concepts, we found a new 6-round saturation characteristic, in which 24bits of the output of 6-th round 9-th order differential equals to zero. We also show a new 9-round saturation characteristic using 105-th order differential which is a 3-round extension of the 6-round one. If we use it, instead of 112-th order differential, using the meet-in-the-middle attack technique for higher order differential table, the data and computational complexity for the attack to 14-round CLEFIA can be reduced to around 2-5, 2-34 of the conventional attack, respectively.

  • Voice Activity Detection Based on Generalized Normal-Laplace Distribution Incorporating Conditional MAP

    Ji-Hyun SONG  Sangmin LEE  

     
    LETTER-Speech and Hearing

      Vol:
    E96-D No:12
      Page(s):
    2888-2891

    In this paper, we propose a novel voice activity detection (VAD) algorithm based on the generalized normal-Laplace (GNL) distribution to provide enhanced performance in adverse noise environments. Specifically, the probability density function (PDF) of a noisy speech signal is represented by the GNL distribution; the variance of the speech and noise of the GNL distribution are estimated using higher-order moments. After in-depth analysis of estimated variances, a feature that is useful for discrimination between speech and noise at low SNRs is derived and compared to a threshold to detect speech activity. To consider the inter-frame correlation of speech activity, the result from the previous frame is employed in the decision rule of the proposed VAD algorithm. The performance of our proposed VAD algorithm is evaluated in terms of receiver operating characteristics (ROC) and detection accuracy. Results show that the proposed method yields better results than conventional VAD algorithms.

  • High Order Limited Random Sequence in Analog-to-Information Converter for Distributed Compressive Sensing

    Chao ZHANG  Zhipeng WU  

     
    PAPER-Digital Signal Processing

      Vol:
    E95-A No:11
      Page(s):
    1998-2006

    Limited Random Sequence (LRS) is quite important for Analog-to-Information Converter (AIC) because it determines the random sampling scheme and the resultant performance. LRS is established with the elements of “0” and “1”. The “1” appears randomly in the segment of the sequence, so that the production of the original signal and LRS can be considered as the approximation of the random sampling of the original signal. The random sampling result can perfectly recover the signal with Compressive Sensing (CS) algorithm. In this paper, a high order LRS is proposed for the AIC design in Distributed Compressive Sensing (DCS), which has the following three typical features: 1) The high order LRS has the elements of integer which can indicate the index number of the sensor in DCS. 2) High order LRS can adapt to the sparsity variation of the original signal detected by each sensor. 3) Employing the AIC with high order LRS, the DCS algorithm can recover the signal with very low sampling rate, usually above 2 orders less than the traditional distributed sensors. In the paper, the scheme and the construction algorithm of high order LRS are proposed. The performance is evaluated with the application studies of the distributed sensor network and the camera picture correspondingly.

  • Finding Higher Order Differentials of MISTY1

    Yukiyasu TSUNOO  Teruo SAITO  Takeshi KAWABATA  Hirokatsu NAKAGAWA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E95-A No:6
      Page(s):
    1049-1055

    MISTY1 is a 64-bit block cipher that has provable security against differential and linear cryptanalysis. MISTY1 is one of the algorithms selected in the European NESSIE project, and it is recommended for Japanese e-Government ciphers by the CRYPTREC project. In this paper, we report on 12th order differentials in 3-round MISTY1 with FL functions and 44th order differentials in 4-round MISTY1 with FL functions both previously unknown. We also report that both data complexity and computational complexity of higher order differential attacks on 6-round MISTY1 with FL functions and 7-round MISTY1 with FL functions using the 46th order differential can be reduced to as much as 1/22 of the previous values by using multiple 44th order differentials simultaneously.

  • Security Analysis of 7-Round MISTY1 against Higher Order Differential Attacks

    Yukiyasu TSUNOO  Teruo SAITO  Maki SHIGERI  Takeshi KAWABATA  

     
    PAPER-Cryptanalysis

      Vol:
    E93-A No:1
      Page(s):
    144-152

    MISTY1 is a 64-bit block cipher that has provable security against differential and linear cryptanalysis. MISTY1 is one of the algorithms selected in the European NESSIE project, and it has been recommended for Japanese e-Government ciphers by the CRYPTREC project. This paper shows that higher order differential attacks can be successful against 7-round versions of MISTY1 with FL functions. The attack on 7-round MISTY1 can recover a partial subkey with a data complexity of 254.1 and a computational complexity of 2120.8, which signifies the first successful attack on 7-round MISTY1 with no limitation such as a weak key. This paper also evaluates the complexity of this higher order differential attack on MISTY1 in which the key schedule is replaced by a pseudorandom function. It is shown that resistance to the higher order differential attack is not substantially improved even in 7-round MISTY1 in which the key schedule is replaced by a pseudorandom function.

  • An Instantaneous Frequency Estimator Based on the Symmetric Higher Order Differential Energy Operator

    Byeong-Gwan IEM  

     
    PAPER-Digital Signal Processing

      Vol:
    E93-A No:1
      Page(s):
    227-232

    A generalized formulation of the instantaneous frequency based on the symmetric higher order differential energy operator is proposed. The motivation for the formulation is that there is some frequency misalignment in time when the ordinary higher order differential energy operator is used for the instantaneous frequency estimator. The special cases of the generalized formulation are also presented. The proposed instantaneous frequency estimators are compared with existing methods in terms of error performance measured in the mean absolute error. In terms of the estimation error performance, the third order instantaneous frequency estimator with the symmetrical structure shows the best result under noise free condition. Under noisy situation, the fourth order instantaneous frequency estimator with the symmetrical structure produces the best results. Application examples are provided to show the usefulness of the estimator.

  • Higher Order Differential Attack on 6-Round MISTY1

    Yukiyasu TSUNOO  Teruo SAITO  Hiroki NAKASHIMA  Maki SHIGERI  

     
    PAPER-Symmetric Cryptography

      Vol:
    E92-A No:1
      Page(s):
    3-10

    MISTY1 is a 64-bit block cipher that has provable security against differential and linear cryptanalysis. MISTY1 is one of the algorithms selected in the European NESSIE project, and it has been recommended for Japanese e-Government ciphers by the CRYPTREC project. This paper reports a previously unknown higher order differential characteristic of 4-round MISTY1 with the FL functions. It also shows that a higher order differential attack that utilizes this newly discovered characteristic is successful against 6-round MISTY1 with the FL functions. This attack can recover a partial subkey with a data complexity of 253.7 and a computational complexity of 264.4, which is better than any previous cryptanalysis of MISTY1.

  • Low Power Realization and Synthesis of Higher-Order FIR Filters Using an Improved Common Subexpression Elimination Method

    K.G. SMITHA  A.P. VINOD  

     
    PAPER-Digital Signal Processing

      Vol:
    E91-A No:11
      Page(s):
    3282-3292

    The complexity of Finite Impulse Response (FIR) filters is mainly dominated by the number of adders (subtractors) used to implement the coefficient multipliers. It is well known that Common Subexpression Elimination (CSE) method based on Canonic Signed Digit (CSD) representation considerably reduces the number of adders in coefficient multipliers. Recently, a binary-based CSE (BSE) technique was proposed, which produced better reduction of adders compared to the CSD-based CSE. In this paper, we propose a new 4-bit binary representation-based CSE (BCSE-4) method which employs 4-bit Common Subexpressions (CSs) for implementing higher order low-power FIR filters. The proposed BCSE-4 offers better reduction of adders by eliminating the redundant 4-bit CSs that exist in the binary representation of filter coefficients. The reduction of adders is achieved with a small increase in critical path length of filter coefficient multipliers. Design examples show that our BCSE-4 gives an average power consumption reduction of 5.2% and 6.1% over the best known CSE method (BSE, NR-SCSE) respectively, when synthesized with TSMC-0.18 µm technology. We show that our BCSE-4 offers an overall adder reduction of 6.5% compared to BSE without any increase in critical path length of filter coefficient multipliers.

  • Guided-Wave EO Intensity Modulator Using Coupled Microstrip Line Electrode of Higher-Order Harmonic Resonance Combined with Polarization-Reversed Structure

    Akira ENOKIHARA  Hiroyoshi YAJIMA  Hiroshi MURATA  Yasuyuki OKAMURA  

     
    PAPER-LiNbO3 Devices

      Vol:
    E90-C No:5
      Page(s):
    1096-1104

    A novel structure of a resonator type guided-wave electro-optic intensity modulator is introduced that uses a higher-order harmonic resonant electrode of coupled microstrip lines combined with polarization-reversed structure. The light modulation cancellation caused by the light transit-time effect in the resonant electrode, which is longer than the wavelength of the standing wave, is compensated for to enhance modulation efficiency. The modulator for 26 GHz operation was designed and fabricated with a LiTaO3 substrate. The modulation electrode is 9.03 mm long for seventh order harmonic resonance by RF signal. The workability of the modulator was confirmed by experiments with 1.3 µm wavelength light.

  • A Study on Higher Order Differential Attack of KASUMI

    Nobuyuki SUGIO  Hiroshi AONO  Sadayuki HONGO  Toshinobu KANEKO  

     
    PAPER-Symmetric Cryptography

      Vol:
    E90-A No:1
      Page(s):
    14-21

    This paper proposes novel calculuses of linearizing attack that can be applied to higher order differential attack. Higher order differential attack is a powerful and versatile attack on block ciphers. It can be roughly summarized as follows: (1) Derive an attack equation to estimate the key by using the higher order differential properties of the target cipher, (2) Determine the key by solving an attack equation. Linearizing attack is an effective method of solving attack equations. It linearizes an attack equation and determines the key by solving a system of linearized equations using approaches such as the Gauss-Jordan method. We enhance the derivation algorithm of the coefficient matrix for linearizing attack to reduce computational cost (fast calculus 1). Furthermore, we eliminate most of the unknown variables in the linearized equations by making the coefficient column vectors 0 (fast calculus 2). We apply these algorithms to an attack of the five-round variant of KASUMI and show that the attack complexity is equivalent to 228.9 chosen plaintexts and 231.2 KASUMI encryptions.

  • An Extension to the Natural Gradient Algorithm for Robust Independent Component Analysis in the Presence of Outliers

    Muhammad TUFAIL  Masahide ABE  Masayuki KAWAMATA  

     
    LETTER-Digital Signal Processing

      Vol:
    E89-A No:9
      Page(s):
    2429-2432

    In this paper, we propose to employ an extension to the natural gradient algorithm for robust Independent Component Analysis against outliers. The standard natural gradient algorithm does not exhibit this property since it employs nonrobust sample estimates for computing higher order moments. In order to overcome this drawback, we propose to use robust alternatives to higher order moments, which are comparatively less sensitive to outliers in the observed data. Some computer simulations are presented to show that the proposed method, as compared to the standard natural gradient algorithm, gives better performance in the presence of outlying data.

  • Optimization for the Algebraic Method and Its Application to an Attack of MISTY1

    Yasuo HATANO  Hidema TANAKA  Toshinobu KANEKO  

     
    PAPER-Symmetric Cipher

      Vol:
    E87-A No:1
      Page(s):
    18-27

    In this paper, we describe a technique for optimizing the algebraic method that is applied to higher order differential attack. The higher order differential attack is a well-known attack on block ciphers, in which we derive an attack equation to determine a round key from a property of a higher order differential of a target block cipher. The algebraic method is a linearization of the attack equation and determines the true key by a method such as Gaussian elimination. Our technique is based on linear dependency and can reduce the complexity of that method. We also describe a technique that allows the algebraic method to be used as an attack equation that holds probabilistically. We demonstrate this method by attacking a five-round MISTY1 and show that it needs 221.6 chosen plaintexts and 228.0 encryption times. The computer simulation took about two minutes to complete.

  • Gesture Recognition Using HLAC Features of PARCOR Images

    Takio KURITA  Satoru HAYAMIZU  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E86-D No:4
      Page(s):
    719-726

    This paper proposes a gesture recognition method which uses higher order local autocorrelation (HLAC) features extracted from PARCOR images. To extract dominant information from a sequence of images, we apply linear prediction coding technique to the sequence of pixel intensities and PARCOR images are constructed from the PARCOR coefficients of the sequences of the pixel values. From the PARCOR images, HLAC features are extracted and the sequences of the features are used as the input vectors of the Hidden Markov Model (HMM) based recognizer. Since HLAC features are inherently shift-invariant and computationally inexpensive, the proposed method becomes robust to changes in the person's position and makes real-time gesture recognition possible. Experimental results of gesture recognition are shown to evaluate the performance of the proposed method.

  • A Study on Higher Order Differential Attack of Camellia

    Takeshi KAWABATA  Masaki TAKEDA  Toshinobu KANEKO  

     
    PAPER-Symmetric Ciphers and Hash Functions

      Vol:
    E86-A No:1
      Page(s):
    31-36

    The encryption algorithm Camellia is a 128 bit block cipher proposed by NTT and Mitsubishi, Japan. Since the algebraic degree of the outputs after 3 rounds is greater than 128, designers estimate that it is impossible to attack Camellia by higher order differential. In this paper, we show a new higher order differential attack which controls the value of differential using proper fixed value of plaintext. As the result, we found that 6-round F-function can be attacked using 8th order differentials. The attack requires 217 chosen plaintexts and 222 F-function operations. Our computer simulation took about 2 seconds for the attack. If we take 2-R elimination algorithm, 7-round F-function will be attacked using 8th order differentials. This attack requires 219 chosen plaintexts and 264 F-function operations, which is less than exhaustive search for 128 bit key.

  • A Higher Order Generalization of an Alias-Free Discrete Time-Frequency Analysis

    Hiroshi HASEGAWA  Yasuhiro MIKI  Isao YAMADA  Kohichi SAKANIWA  

     
    PAPER-Theory of Signals

      Vol:
    E85-A No:8
      Page(s):
    1774-1780

    In this paper, we propose a novel higher order time-frequency distribution (GDH) for a discrete time signal. This distribution is defined over the original discrete time-frequency grids through a delicate discretization of an equivalent expression of a higher order distribution, for a continuous time signal, in [4]. We also present a constructive design method, for the kernel of the GDH, by which the distribution satisfies (i) the alias free condition as well as (ii) the marginal conditions. Numerical examples show that the proposed distributions reasonably suppress the artifacts which are observed severely in the Wigner distribution and its simple higher order generalization.

  • Sub-100 fs Higher Order Soliton Compression in Dispersion-Flattened Fibers

    Masahiro TSUCHIYA  Koji IGARASHI  Satoshi SAITO  Masato KISHI  

     
    INVITED PAPER-Optical Pulse Compression, Control and Monitoring

      Vol:
    E85-C No:1
      Page(s):
    141-149

    We review recent progresses in our studies on the fiber-optic soliton compression and related subjects with special emphasis on dispersion-flattened fibers (DFFs). As for the ultimately short pulse generation, it has been demonstrated to compress 5 ps laser diode pulses down to 20 fs with a 15.1 m-long single-stage step-like dispersion profiled fiber employed. The compression was brought about through a series of the higher order soliton processes in conjunction with a single and ordinary erbium-doped fiber preamplifier, and DFFs contained at its end played a major role. We have performed intensive investigations on the DFF compression mechanisms in the 100-20 fs range. A fairly reliable model was developed for the higher order soliton propagation along a DFF in the temporal range from 100 down to 30 fs by taking into consideration the higher order nonlinear and dispersion effects as well as incident pulse shape dependence. Through the simulation, parametric spectrum generation originating from the modulation instability gain was pointed out at frequencies apart from the pump wave frequency, which agrees with the experimental observation. Its possible application is also discussed.

  • Enhancement and Tracking of a Single Sinusoid in Noise Using Cumulant-Based IIR Adaptive Notch Filter

    Reda Ragab GHARIEB  Yuukou HORITA  Tadakuni MURAI  

     
    PAPER-Digital Signal Processing

      Vol:
    E84-A No:2
      Page(s):
    568-576

    In this paper, a novel cumulant-based adaptive notch filtering technique for the enhancement and tracking of a single sinusoid in additive noise is presented. In this technique, the enhanced signal is obtained as the output of a narrow bandpass filter implemented using a second-order pole-zero constraint IIR adaptive notch filter, which needs only one coefficient to be updated. The filter coefficient, which leads to identifying and tracking the sinusoidal frequency, is updated using a suggested adaptive algorithm employing a recursive estimate of the kurtosis and only one-sample-lag point of a selected one-dimensional fourth-order cumulant slice of the input signal. Therefore, the proposed technique provides automatically resistance to additive Gaussian noise. It is also shown that the presented technique outperforms the correlation-based counterpart in handling additive non-Gaussian noise. Simulation results are provided to show the effectiveness of the proposed algorithm in comparison with the correlation-based lattice algorithm.

  • Practical Evaluation of Security against Generalized Interpolation Attack

    Kazumaro AOKI  

     
    PAPER

      Vol:
    E83-A No:1
      Page(s):
    33-38

    Interpolation attack was presented by Jakobsen and Knudsen at FSE'97. Interpolation attack is effective against ciphers that have a certain algebraic structure like the PURE cipher which is a prototype cipher, but it is difficult to apply the attack to real-world ciphers. This difficulty is due to the difficulty of deriving a low degree polynomial relation between ciphertexts and plaintexts. In other words, it is difficult to evaluate the security against interpolation attack. This paper generalizes the interpolation attack. The generalization makes easier to evaluate the security against interpolation attack. We call the generalized interpolation attack linear sum attack. We present an algorithm that evaluates the security of byte-oriented ciphers against linear sum attack. Moreover, we show the relationship between linear sum attack and higher order differential attack. In addition, we show the security of CRYPTON, E2, and RIJNDAEL against linear sum attack using the algorithm.

1-20hit(28hit)