1-11hit |
Arif DATAESATU Kosuke SANADA Hiroyuki HATANO Kazuo MORI Pisit BOONSRIMUANG
The fifth-generation (5G) new radio (NR) standard employs ultra-reliable and low-latency communication (URLLC) to provide real-time wireless interactive capability for the internet of things (IoT) applications. To satisfy the stringent latency and reliability demands of URLLC services, grant-free (GF) transmissions with the K-repetition transmission (K-Rep) have been introduced. However, fading fluctuations can negatively impact signal quality at the base station (BS), leading to an increase in the number of repetitions and raising concerns about interference and energy consumption for IoT user equipment (UE). To overcome these challenges, this paper proposes novel adaptive K-Rep control schemes that employ site diversity reception to enhance signal quality and reduce energy consumption. The performance evaluation demonstrates that the proposed adaptive K-Rep control schemes significantly improve communication reliability and reduce transmission energy consumption compared with the conventional K-Rep scheme, and then satisfy the URLLC requirements while reducing energy consumption.
Mitsuhiko KATAGIRI Shofu MATSUDA Norio NAGAYAMA Minoru UMEDA
We describe the preparation of an α-phenyl-4'-(diphenylamino)stilbene (TPA) single crystal and the evaluation of its hole transport property. Based on the characterization using optical microscopy, polarizing microscopy, and X-ray diffraction, a large-scale TPA single crystal of dimensions 7.0×0.9×0.8mm is successfully synthesized using a solution method based on the solubility and supersolubility curves of the TPA. Notably, the current in the long-axis direction is larger than those in the short-axis and thickness directions (i(long) > i(short) > i(thickness)), which reveals the anisotropic charge transfer of the TPA single crystal. The observed anisotropic conductivity is well explained by the orientation of the triphenylamine unit in the TPA single crystal. Furthermore, the activation energy of the long-axis direction in the TPA single crystal is lower than that of the short-axis in TPA and all the axes in the α-phenyl-4'-[bis(4-methylphenyl)amino]stilbene single crystal reported in our previous study.
Shunsuke YAMAKI Masahide ABE Masayuki KAWAMATA
This letter proposes performance evaluation of phase-only correlation (POC) functions using signal-to-noise ratio (SNR) and peak-to-correlation energy (PCE). We derive the general expressions of SNR and PCE of the POC functions as correlation performance measures. SNR is expressed by simple fractional function of circular variance. PCE is simply given by squared peak value of the POC functions, and its expectation can be expressed in terms of circular variance.
The field electron emission characteristics of a p-type Si emitter sharpened by a spirally scanned Ga focused-ion-beam milling process were investigated. Saturated Fowler--Nordheim (F--N) plots, which are unique phenomena of p-type semiconductor emitters, were observed. The slight increase of the emission current in the saturated F--N plots region was discussed in terms of the depletion layer width in which electron generation occurs. The temperature dependence of the field electron emission current was also discussed. The activation energy of carrier generation was determined to be 0.26,eV, ascribable to the surface states that accompany the defects introduced by the Ga ion beam. When the emitter was irradiated by a 650-nm-wavelength laser, the increase in the emission current, i.e., the photoexcited emission current, was observed in the saturated region of the F--N plots. The photoexcited emission current was proportional to the laser intensity.
Jae-Hun CHOI Joon-Hyuk CHANG Seong-Ro LEE
In this paper, a novel approach to speech reinforcement in a low-bit-rate speech coder under ambient noise environments is proposed. The excitation vector of ambient noise is efficiently obtained at the near-end and then combined with the excitation signal of the far-end for a suitable reinforcement gain within the G.729 CS-ACELP Annex. B framework. For this reason, this can be clearly different from previous approaches in that the present approach does not require an additional arithmetic step such as the discrete Fourier transform (DFT). Experimental results indicate that the proposed method shows better performance than or at least comparable to conventional approaches with a lower computational burden.
We determine the annealing dynamics of AsGa antisite defects in As ion-implanted GaAs. An Arrhenius plot of the carrier decay rate or the defect density vs. the annealing temperature in the high temperature regime gives an energy EPA, which is different from true activation energy. The annealing time dependence of EPA obtained by the two diffusion models (self diffusion of AsGa antisite defects and VGa vacancy assisted diffusion of AsGa antisite defects) are compared with EPA's obtained from already published works. The results prove that the diffusion of AsGa antisite defects is assisted by the VGa vacancy defects that exist in a high density.
Masayuki MIYAZAKI Hidetoshi TANAKA Goichi ONO Tomohiro NAGANO Norio OHKUBO Takayuki KAWAHARA
A vibration-to-electric energy converter as a power generator through a variable-resonating capacitor is theoretically and experimentally demonstrated as a potential on-chip battery. The converter is constructed from three components: a mechanical-variable capacitor, a charge-transporter circuit and a timing-capture control circuit. An optimum design methodology is theoretically described to maximize the efficiency of the vibration-to-electric energy conversion. The energy-conversion efficiency is analyzed based on the following three factors: the mechanical-energy to electric-energy conversion loss, the parasitic elements loss in the charge-transporter circuit and the timing error in the timing-capture circuit. Through the mechanical-energy conversion analysis, the optimum condition for the resonance is found. The parasitic elements in the charge-transporter circuit and the timing management of the capture circuit dominate the output energy efficiency. These analyses enable the optimum design of the energy-conversion system. The converter is fabricated experimentally. The practical measured power is 0.12 µW, and the conversion efficiency is 21%. This efficiency is calculated from a 43% mechanical-energy conversion loss and a 63% charge-transportation loss. The timing-capture circuit is manually controlled in this experiment, so that the timing error is not considered in the efficiency. From our result, a new system LSI application with an embedded power source can be explored for the ubiquitous computing world.
Katsuya SHIGA Junko KOMORI Masafumi KATSUMATA Akinobu TERAMOTO Yoji MASHIKO
A new method using new test structure, which is connected 15.4 million MOS transistor, for evaluating extrinsic oxide breakdown is proposed. The active gate area which is needed to predict reliability will be shown. And by using this new method, activation energy not only for the intrinsic breakdown but also for the extrinsic breakdown are obtained.
Zhuan-Ke CHEN Toshiro HAYAKAWA Koichiro SAWA
The electromagnetic interference (EMI) induced by steady arc has been demonstrated to be dependent on arc voltage fluctuation when the arc transfers from the metallic phase to the gaseous phase. In order to give the physical understanding of this arc voltage fluctuation and EMI, several typical materials, such as Ag, Cu and Zr, were tested and their arc behavior was determined and compared. The experimental results indicated that the arc behavior, in particular the arc voltage fluctuation in the moment that metallic phase transfers to the gaseous phase was different for different materials. Based on the test results and former investigations, a plausible mechanism is proposed for understanding these phenomena.
Yasuhiko KASAMA Tadahiro OHMI Koichi FUKUDA Hirobumi FUKUI Chisato IWASAKI Shoichi ONO
It has been revealed that ion bombardment energy and ion flux density play an essentially critical role in SiNx deposition process of PECVD in TFT-LCD production. Ion energy and ion flux density bombarding onto substrate surface are known to be extracted from waveform of RF applied to an electrode. Using this method, we investigated film quality of SiNx formed in the conventional parallel plate PECVD equipment. When N2 + H2 or N2 + Ar is employed as a carrier gas in source gas (SiH4 + NH3), we have defined normalized ion flux density as ion flux density divided by deposited SiNx molecule which must be increased to obtain high quality SiNx film while ion energy is suppressed at low level as not giving damages on the film surface. This technique has made it possible to securely form SiNx film (2500 ) featuring dielectric break-down field intensity of 8.5 MV/cm at 250 on a glass substrate with Cr gate interconnects of 1000 having vertical step struc-ture. One of the important factors to improve film quality of SiNx deposited in PECVD is to increase ion flux density while keeping ion bombardment energy low enough to protect growing surface against any damages. Using this technique inverse-staggered TFT-array featuring field effect mobility of 0.96 cm2/V
Takeo YAMASHITA Satoshi HASAKA Iwao NATORI Tadahiro OHMI
The two most important parameters in reactive ion etching process, ion bombardment energy and flux, were extracted through a simple RF waveform measurement at the excitation electrode in a conventional cathode-coupled plasma RIE system. By using the extracted plasma parameters, damage and contamination in Si substrates induced by reactive ion etching in a SiCl4 plasma were investigated. A very convenient map representation of ion energy and ion flux was introduced in understanding the etching process occurring in the RIE system.