The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] matrix(492hit)

161-180hit(492hit)

  • A Scattering Field Expression by Dielectric Gratings Using Circularly Poarized Waves

    Hideaki WAKABAYASHI  Masamitsu ASAI  Jiro YAMAKITA  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E98-C No:2
      Page(s):
    162-165

    In the scattering problem of dielectric gratings in conical mounting, we have considered and formulated scattering fields using transverse electric (TE) and transverse magnetic (TM) waves. This paper formulates scattering fields by superpositions of right-circularly (RC) and left-circularly (LC) polarized waves through the matrix eigenvalue method.

  • Generalization to Any Field of Toeplitz Matrix Vector Product Based on Multi-Way Splitting Method and Its Application

    Sun-Mi PARK  Ku-Young CHANG  Dowon HONG  Changho SEO  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E98-A No:1
      Page(s):
    378-383

    In several important applications, we often encounter with the computation of a Toeplitz matrix vector product (TMVP). In this work, we propose a k-way splitting method for a TMVP over any field F, which is a generalization of that over GF(2) presented by Hasan and Negre. Furthermore, as an application of the TMVP method over F, we present the first subquadratic space complexity multiplier over any finite field GF(pn) defined by an irreducible trinomial.

  • Block Adaptive Algorithm for Signal Declipping Based on Null Space Alternating Optimization

    Tomohiro TAKAHASHI  Kazunori URUMA  Katsumi KONISHI  Toshihiro FURUKAWA  

     
    LETTER-Speech and Hearing

      Pubricized:
    2014/10/06
      Vol:
    E98-D No:1
      Page(s):
    206-209

    This letter deals with the signal declipping algorithm based on the matrix rank minimization approach, which can be applied to the signal restoration in linear systems. We focus on the null space of a low-rank matrix and provide a block adaptive algorithm of the matrix rank minimization approach to signal declipping based on the null space alternating optimization (NSAO) algorithm. Numerical examples show that the proposed algorithm is faster and has better performance than other algorithms.

  • Sparse and Low-Rank Matrix Decomposition for Local Morphological Analysis to Diagnose Cirrhosis

    Junping DENG  Xian-Hua HAN  Yen-Wei CHEN  Gang XU  Yoshinobu SATO  Masatoshi HORI  Noriyuki TOMIYAMA  

     
    PAPER-Biological Engineering

      Pubricized:
    2014/08/26
      Vol:
    E97-D No:12
      Page(s):
    3210-3221

    Chronic liver disease is a major worldwide health problem. Diagnosis and staging of chronic liver diseases is an important issue. In this paper, we propose a quantitative method of analyzing local morphological changes for accurate and practical computer-aided diagnosis of cirrhosis. Our method is based on sparse and low-rank matrix decomposition, since the matrix of the liver shapes can be decomposed into two parts: a low-rank matrix, which can be considered similar to that of a normal liver, and a sparse error term that represents the local deformation. Compared with the previous global morphological analysis strategy based on the statistical shape model (SSM), our proposed method improves the accuracy of both normal and abnormal classifications. We also propose using the norm of the sparse error term as a simple measure for classification as normal or abnormal. The experimental results of the proposed method are better than those of the state-of-the-art SSM-based methods.

  • Calculate Very Fast Transient Current by the Inverse Operation of the Transient Electromagnetic Near Field due to Switch Operation in Gas Insulated Switchgear

    Weifeng XIN  Guogang ZHANG  Jianqiang WANG  Kai LIU  Yingsan GENG  Mingzhe RONG  

     
    PAPER

      Vol:
    E97-C No:9
      Page(s):
    888-893

    For the direct measurement of very fast transient current (VFTC) due to switch operation in gas insulated switchgear (GIS), usually it will interfere the original operation or change the structure of switch. In this paper a method for calculation of transient current caused by the disconnect operation in GIS by the inverse operation of the electromagnetic (EM) near field is presented. A GIS is modeled by the finite integration technique (FIT), and all the media between the excitation source and the observation position are considered as a black box whose input is VFTC and output is EM field. A coefficient matrix is established to reflect the connection between the input and output in frequency domain, and the VFTC in frequency domain will be the result of multiplying the inverse matrix by the measurement result minus the EM field caused by transient grounding potential rise (TGPR) or transient enclosure voltage (TEV) in the observation position. Finally the time domain form of VFTC can be obtained by the interpolation and IFFT. Comparison between the result and simulation shows the validation of this method.

  • Fourier Expansion Method for Positive Real Approximation of Sampled Frequency Data

    Yuichi TANJI  

     
    PAPER-Circuit Theory

      Vol:
    E97-A No:9
      Page(s):
    1937-1944

    Positive real approximation of sampled frequency data obtained from electromagnetic analysis or measurement is presented. The proposed two methods are based on the Fourier expansion method. The frequency data are approximated by the Laguerre series that becomes the Fourier series with an infinite interval at an imaginary axis of complex plane. The proposed methods do not require any passivity check algorithm. The first method approximates the real parts of sampled data by the piecewise linear matrix function. The second method uses discrete Fourier transform. It is here proven that the approximated matrix function is an interpolative function for the real parts of sampled data. The proposed methods are applied to the approximation of per unit length parameters of multi-conductor system. The capability of the proposed methods is demonstrated.

  • Robust and Fast Phonetic String Matching Method for Lyric Searching Based on Acoustic Distance

    Xin XU  Tsuneo KATO  

     
    PAPER-Music Information Processing

      Vol:
    E97-D No:9
      Page(s):
    2501-2509

    This paper proposes a robust and fast lyric search method for music information retrieval (MIR). The effectiveness of lyric search systems based on full-text retrieval engines or web search engines is highly compromised when the queries of lyric phrases contain incorrect parts due to mishearing. To improve the robustness of the system, the authors introduce acoustic distance, which is computed based on a confusion matrix of an automatic speech recognition experiment, into Dynamic-Programming (DP)-based phonetic string matching to identify the songs that the misheard lyric phrases refer to. An evaluation experiment verified that the search accuracy is increased by 4.4% compared with the conventional method. Furthermore, in this paper a two-pass search algorithm is proposed to realize real-time execution. The algorithm pre-selects the probable candidates using a rapid index-based search in the first pass and executes a DP-based search process with an adaptive termination strategy in the second pass. Experimental results show that the proposed search method reduced processing time by more than 86.2% compared with the conventional methods for the same search accuracy.

  • Joint Lifetime-Utility Cross-Layer Optimization for Network Coding-Based Wireless Multi-Hop Networks with Matrix Game and Multiple Payoffs

    Jain-Shing LIU  

     
    PAPER-Network

      Vol:
    E97-B No:8
      Page(s):
    1638-1646

    Maximizing network lifetime and optimizing aggregate system utility are important but usually conflict goals in wireless multi-hop networks. For the trade-off, we present a matrix game-theoretic cross-layer optimization formulation to jointly maximize the diverse objectives in such networks with network coding. To this end, we introduce a cross-layer formulation of general network utility maximization (NUM) that accommodates routing, scheduling, and stream control from different layers in the coded networks. Specifically, for the scheduling problem and then the objective function involved, we develop a matrix game with the strategy sets of the players corresponding to hyperlink and transmission mode, and design multiple payoffs specific to lifetime and system utility, respectively. In particular, with the inherit merit that matrix game can be solved with mathematical programming, our cross-layer programming formulation actually benefits from both game-based and NUM-based approaches at the same time by cooperating the programming model for the matrix game with that for the other layers in a consistent framework. Finally, our numerical experiments quantitatively exemplify the possible performance trad-offs with respect to the two variants developed on the multiple objectives in question while qualitatively exhibiting the differences between the framework and the other related works.

  • Fast Correlation Method for Partial Fourier and Hadamard Sensing Matrices in Matching Pursuit Algorithms

    Kee-Hoon KIM  Hosung PARK  Seokbeom HONG  Jong-Seon NO  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:8
      Page(s):
    1674-1679

    There have been many matching pursuit algorithms (MPAs) which handle the sparse signal recovery problem, called compressed sensing (CS). In the MPAs, the correlation step makes a dominant computational complexity. In this paper, we propose a new fast correlation method for the MPA when we use partial Fourier sensing matrices and partial Hadamard sensing matrices which are widely used as the sensing matrix in CS. The proposed correlation method can be applied to almost all MPAs without causing any degradation of their recovery performance. Also, the proposed correlation method can reduce the computational complexity of the MPAs well even though there are restrictions depending on a used MPA and parameters.

  • Tracking Analysis of Adaptive Filters with Error and Matrix Data Nonlinearities

    Wemer M. WEE  Isao YAMADA  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:8
      Page(s):
    1659-1673

    We consider a unified approach to the tracking analysis of adaptive filters with error and matrix data nonlinearities. Using energy-conservation arguments, we not only derive earlier results in a unified manner, but we also obtain new performance results for more general adaptive algorithms without requiring the restriction of the regression data to a particular distribution. Numerical simulations support the theoretical results.

  • Bilayer Lengthened QC-LDPC Codes Design for Relay Channel

    Hua XU  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E97-B No:7
      Page(s):
    1365-1374

    The relay channel is the common approach to cooperative communication. Quasi-cyclic low-density parity-check (QC-LDPC) code design for the relay channel is important to cooperative communication. This paper proposes a bilayer QC-LDPC code design scheme for the relay channel. Combined with the bilayer graphical code structure, an improved Chinese remainder theorem (CRT) method, the Biff-CRT method is presented. For the proposed method we introduce a finite field approach. The good performance of the finite field based QC-LDPC code can improve the performance of its corresponding objective QC-LDPC code in the proposed scheme. We construct the FF code and the FA code by the Biff-CRT method. The FF code and the FA code are both named as their two component codes. For the FF code, the two component code are both finite field based QC-LDPC codes. For the FA code, one of the component codes is the finite field based QC-LDPC code and the other is the array code. For the existing CRT method, the shortened array code and the array code are usually used as the component codes to construct the SA code. The exponent matrices of FF code, FA code and SA code are given both for the overall graph and the lower graph. Bit error rate (BER) simulation results indicate that the proposed FF code and FA code are superior to the SA code both at the relay node and the destination node. In addition, the theoretical limit and the BER of the bilayer irregular LDPC code are also given to compare with the BER of the proposed QC-LDPC codes. Moreover, the proposed Biff-CRT method is flexible, easy to implement and effective for constructing the QC-LDPC codes for the relay channel, and it is attractive for being used in the future cooperative communication systems.

  • Noise-Robust Voice Conversion Based on Sparse Spectral Mapping Using Non-negative Matrix Factorization

    Ryo AIHARA  Ryoichi TAKASHIMA  Tetsuya TAKIGUCHI  Yasuo ARIKI  

     
    PAPER-Voice Conversion and Speech Enhancement

      Vol:
    E97-D No:6
      Page(s):
    1411-1418

    This paper presents a voice conversion (VC) technique for noisy environments based on a sparse representation of speech. Sparse representation-based VC using Non-negative matrix factorization (NMF) is employed for noise-added spectral conversion between different speakers. In our previous exemplar-based VC method, source exemplars and target exemplars are extracted from parallel training data, having the same texts uttered by the source and target speakers. The input source signal is represented using the source exemplars and their weights. Then, the converted speech is constructed from the target exemplars and the weights related to the source exemplars. However, this exemplar-based approach needs to hold all training exemplars (frames), and it requires high computation times to obtain the weights of the source exemplars. In this paper, we propose a framework to train the basis matrices of the source and target exemplars so that they have a common weight matrix. By using the basis matrices instead of the exemplars, the VC is performed with lower computation times than with the exemplar-based method. The effectiveness of this method was confirmed by comparing its effectiveness (in speaker conversion experiments using noise-added speech data) with that of an exemplar-based method and a conventional Gaussian mixture model (GMM)-based method.

  • Improvement of Semi-Random Measurement Matrix for Compressed Sensing

    Wentao LV  Junfeng WANG  Wenxian YU  Zhen TAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:6
      Page(s):
    1426-1429

    In compressed sensing, the design of the measurement matrix is a key work. In order to achieve a more precise reconstruction result, the columns of the measurement matrix should have better orthogonality or linear incoherence. A random matrix, like a Gaussian random matrix (GRM), is commonly adopted as the measurement matrix currently. However, the columns of the random matrix are only statistically-orthogonal. By substituting an orthogonal basis into the random matrix to construct a semi-random measurement matrix and by optimizing the mutual coherence between dictionary columns to approach a theoretical lower bound, the linear incoherence of the measurement matrix can be greatly improved. With this optimization measurement matrix, the signal can be reconstructed from its measures more precisely.

  • Polarimetric Coherence Optimization and Its Application for Manmade Target Extraction in PolSAR Data

    Shun-Ping XIAO  Si-Wei CHEN  Yu-Liang CHANG  Yong-Zhen LI  Motoyuki SATO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E97-C No:6
      Page(s):
    566-574

    Polarimetric coherence strongly relates to the types and orientations of local scatterers. An optimization scheme is proposed to optimize the coherence between two polarimetric channels for polarimetric SAR (PolSAR) data. The coherence magnitude (correlation coefficient) is maximized by rotating a polarimetric coherence matrix in the rotation domain around the radar line of sight. L-band E-SAR and X-band Pi-SAR PolSAR data sets are used for demonstration and validation. The coherence of oriented manmade targets is significantly enhanced while that of forests remains relatively low. Therefore, the proposed technique can effectively discriminate these two land covers which are easily misinterpreted by the conventional model-based decomposition. Moreover, based on an optimized polarimetric coherence parameter and the total backscattered power, a simple manmade target extraction scheme is developed for application demonstration. This approach is applied with the Pi-SAR data. The experimental results validate the effectiveness of the proposed method.

  • Efficient CORDIC-Based Processing Elements in Scalable Complex Matrix Inversion

    Huan HE  Feng YU  Bei ZHAO  

     
    LETTER-Algorithms and Data Structures

      Vol:
    E97-A No:5
      Page(s):
    1144-1148

    In this paper we apply angle recoding to the CORDIC-based processing elements in a scalable architecture for complex matrix inversion. We extend the processing elements from the scalable real matrix inversion architecture to the complex domain and obtain the novel scalable complex matrix inversion architecture, which can significantly reduce computational complexity. We rearrange the CORDIC elements to make one half of the processing elements simple and compact. For the other half of the processing elements, the efficient use of angler recoding reduces the number of microrotation steps of the CORDIC elements to 3/4. Consequently, only 3 CORDIC elements are required for the processing elements with full utilization.

  • Radix-R WHT-FFT with Identical Stage-to-Stage Interconnection Pattern

    Qianjian XING  Feng YU  Xiaobo YIN  Bei ZHAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:5
      Page(s):
    1125-1129

    In this letter, we present a radix-R regular interconnection pattern family of factorizations for the WHT-FFT with identical stage-to-stage interconnection pattern in a unified form, where R is any power of 2. This family of algorithms has identical sparse matrix factorization in each stage and can be implemented in a merged butterfly structure, which conduce to regular and efficient memory managing scalable to high radices. And in each stage, the butterflies with same twiddle factor set are aggregated together, which can reduce the twiddle factor evaluations or accesses to the lookup table. The kinds of factorization can also be extended to FFT, WHT and SCHT with identical stage-to-stage interconnection pattern.

  • Indoor Localization Algorithm for TDOA Measurement in NLOS Environments

    Xiaosheng YU  Chengdong WU  Long CHENG  

     
    LETTER-Graphs and Networks

      Vol:
    E97-A No:5
      Page(s):
    1149-1152

    The complicated indoor environment such as obstacles causes the non-line of sight (NLOS) environment. In this paper, we propose a voting matrix based residual weighting (VM-Rwgh) algorithm to mitigate NLOS errors in indoor localization system. The voting matrix is employed to provide initial localization results. The residual weighting is used to improve the localization accuracy. The VM-Rwgh algorithm can overcome the effects of NLOS errors, even when more than half of the measurements contain NLOS errors. Simulation results show that the VM-Rwgh algorithm provides higher location accuracy with relatively lower computational complexity in comparison with other methods.

  • Music Signal Separation Based on Supervised Nonnegative Matrix Factorization with Orthogonality and Maximum-Divergence Penalties

    Daichi KITAMURA  Hiroshi SARUWATARI  Kosuke YAGI  Kiyohiro SHIKANO  Yu TAKAHASHI  Kazunobu KONDO  

     
    LETTER-Engineering Acoustics

      Vol:
    E97-A No:5
      Page(s):
    1113-1118

    In this letter, we address monaural source separation based on supervised nonnegative matrix factorization (SNMF) and propose a new penalized SNMF. Conventional SNMF often degrades the separation performance owing to the basis-sharing problem. Our penalized SNMF forces nontarget bases to become different from the target bases, which increases the separated sound quality.

  • Analog Decoding Method for Simplified Short-Range MIMO Transmission

    Ryochi KATAOKA  Kentaro NISHIMORI  Takefumi HIRAGURI  Naoki HONMA  Tomohiro SEKI  Ken HIRAGA  Hideo MAKINO  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:3
      Page(s):
    620-630

    A novel analog decoding method using only 90-degree phase shifters is proposed to simplify the decoding method for short-range multiple-input multiple-output (MIMO) transmission. In a short-range MIMO transmission, an optimal element spacing that maximizes the channel capacity exists for a given transmit distance between the transmitter and receiver. We focus on the fact that the weight matrix by zero forcing (ZF) at the optimal element spacing can be obtained by using dividers and 90-degree phase shifters because it can be expressed by a unitary matrix. The channel capacity by the proposed method is next derived for the evaluation of the exact limitation of the channel capacity. Moreover, it is shown that an optimal weight when using directional antennas can be expressed by using only dividers, 90-degree phase shifters, and attenuators, regardless of the beam width of the directional antenna. Finally, bit error rate and channel capacity evaluations by both simulation and measurement confirm the effectiveness of the proposed method.

  • Time-Varying AR Spectral Estimation Using an Indefinite Matrix-Based Sliding Window Fast Linear Prediction

    Kiyoshi NISHIYAMA  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:2
      Page(s):
    547-556

    A method for efficiently estimating the time-varying spectra of nonstationary autoregressive (AR) signals is derived using an indefinite matrix-based sliding window fast linear prediction (ISWFLP). In the linear prediction, the indefinite matrix plays a very important role in sliding an exponentially weighted finite-length window over the prediction error samples. The resulting ISWFLP algorithm successively estimates the time-varying AR parameters of order N at a computational complexity of O(N) per sample. The performance of the AR parameter estimation is superior to the performances of the conventional techniques, including the Yule-Walker, covariance, and Burg methods. Consequently, the ISWFLP-based AR spectral estimation method is able to rapidly track variations in the frequency components with a high resolution and at a low computational cost. The effectiveness of the proposed method is demonstrated by the spectral analysis results of a sinusoidal signal and a speech signal.

161-180hit(492hit)