The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] microstrip(190hit)

1-20hit(190hit)

  • Surrogate-Based EM Optimization Using Neural Networks for Microwave Filter Design Open Access

    Masataka OHIRA  Zhewang MA  

     
    INVITED PAPER

      Pubricized:
    2022/03/15
      Vol:
    E105-C No:10
      Page(s):
    466-473

    A surrogate-based electromagnetic (EM) optimization using neural networks (NNs) is presented for computationally efficient microwave bandpass filter (BPF) design. This paper first describes the forward problem (EM analysis) and the inverse problems (EM design), and the two fundamental issues in BPF designs. The first issue is that the EM analysis is a time-consuming task, and the second one is that EM design highly depends on the structural optimization performed with the help of EM analysis. To accelerate the optimization design, two surrogate models of forward and inverse models are introduced here, which are built with the NNs. As a result, the inverse model can instantaneously guess initial structural parameters with high accuracy by simply inputting synthesized coupling-matrix elements into the NN. Then, the forward model in conjunction with optimization algorithm enables designers to rapidly find optimal structural parameters from the initial ones. The effectiveness of the surrogate-based EM optimization is verified through the structural designs of a typical fifth-order microstrip BPF with multiple couplings.

  • Improvement of Port-to-Port Isolation Characteristics of a Linearly Dual-Polarized Dual-Band and Wideband Multi-Ring Microstrip Antenna Fed by Two L-Probes with a Via

    Yuki KIMURA  Sakuyoshi SAITO  Yuichi KIMURA  Masahiro TATEMATSU  

     
    PAPER-Antennas

      Pubricized:
    2021/12/17
      Vol:
    E105-B No:6
      Page(s):
    715-721

    This paper presents improvement of port-to-port isolation characteristics of a linearly dual-polarized dual-band and wideband multi-ring microstrip antenna (MR-MSA) fed by two L-probes. The linearly dual-polarized dual-band and wideband MR-MSA consists of two circular ring patches and two L-probes arranged in a multi-layered dielectric substrate. By using a thick substrate for the L-probe and arranging two ring patches as radiation elements, the proposed antenna operates wideband and dual-band characteristics. Furthermore, by arranging two L-probes at the orthogonal positions, the proposed antenna can radiate dual linear polarizations. In this paper, for improving port-to-port isolation characteristics of the linearly dual-polarized dual-band and wideband MR-MSA fed by two L-probes, a via connected to the ground plane at the center of the radiation elements is arranged. The fractional bandwidths below -10dB reflection obtained by the simulation of the MR-MSA with the via were 17.0% and 14.4%. Furthermore, the simulated isolation characteristics were more than 21.0dB and 17.0dB in the two bands. Improvement of the isolation characteristics between two ports as well as the dual-band and wideband performance of the proposed MR-MSA with the via were confirmed by the simulation and the measurement.

  • Design of the Circularly Polarized Ring Microstrip Antenna with Shorting Pins

    Jun GOTO  Akimichi HIROTA  Kyosuke MOCHIZUKI  Satoshi YAMAGUCHI  Kazunari KIHIRA  Toru TAKAHASHI  Hideo SUMIYOSHI  Masataka OTSUKA  Naofumi YONEDA  Jiro HIROKAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/08/05
      Vol:
    E105-B No:1
      Page(s):
    34-43

    We present a novel circularly polarized ring microstrip antenna and its design. The shorting pins discretely disposed on the inner edge of the ring microstrip antenna are introduced as a new degree of freedom for improving the resonance frequency control. The number and diameter of the shorting pins control the resonance frequency; the resonance frequency can be almost constant with respect to the inner/outer diameter ratio, which expands the use of the ring microstrip antenna. The dual-band antenna where the proposed antenna includes another ring microstrip antenna is designed and measured, and simulated results agree well with the measured one.

  • A Simple and Compact Planar Balun with Slit Ground

    Ryosuke SUGA  Kazuto OSHIMA  Tomoki UWANO  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/04/09
      Vol:
    E104-C No:11
      Page(s):
    667-671

    In this paper, a planar balun having simple and compact features with slit ground was proposed. The operating frequency can be designed by the length and position of the defected ground slits. The 20 dB bandwidth of the common mode rejection ratio of the measuring balun was over 90%.

  • Radiation Properties of Wideband Multi-Ring Microstrip Antennas Fed by an L-Probe for Single- and Dual-Band Operations

    Yuki KIMURA  Sakuyoshi SAITO  Yuichi KIMURA  Tatsuya FUKUNAGA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/01/08
      Vol:
    E104-B No:7
      Page(s):
    858-864

    This paper presents the design and measurement of wideband multi-ring microstrip antennas fed by an L-probe for single- and dual-band operation. The proposed antennas consist of one or two square ring patches and an L-probe arranged in a multi-layered dielectric substrate. By using a thick substrate for the L-probe and optimizing the distances between the L-probe and the patches, wideband performance is successfully achieved. The optimal substrate thickness of the L-probe and patches to obtain good wideband performance were determined, and prototype antennas for single- and dual-band operation were fabricated and tested. The measured fractional bandwidths corresponding to reflection coefficients below -10dB were 46.1% for the single-band antenna and 20.3% and 15.7% for the dual-band antenna. The measured gains of the test antennas in the above bandwidths were 0-6.9dBi for the single-band antenna and 3.0-8.6dBi for the dual-band antenna. Although the E-plane radiation patterns were slightly tilted against the frequency, stable broadside radiation was confirmed. The proposed antennas exhibited excellent performance as wideband planar antennas for single- and dual-band operation. The proposed wideband antennas can be easily extended to a dual linearly polarized antenna by using another L-probe in the orthogonal position.

  • Design of the Traveling-Wave Series-Fed Microstrip Antenna Array with Power Control Slits of Unequal Inter-Element Spacing

    Jun GOTO  Makoto MATSUKI  Takashi MARUYAMA  Toru FUKASAWA  Naofumi YONEDA  Jiro HIROKAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/12/04
      Vol:
    E104-B No:6
      Page(s):
    624-629

    This study aims to propose a novel traveling-wave series-fed microstrip array antenna and its design. The proposed antenna has two features: additional slits placed on the output side of the antenna element are introduced as a new degree of freedom to control the radiation power from each element. Also, the unequal element spacing is applied to compensate passing phases of each antenna element; meander lines that would increase the insertion loss are not used. A 9-element linear array is designed and tested, and the simulated and measured results agree, thus validating the proposed design.

  • Phase Stabilization by Open Stubs for Via-Less Waveguide to Microstrip Line Transition

    Takashi MARUYAMA  Shigeo UDAGAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/11/05
      Vol:
    E104-B No:5
      Page(s):
    530-538

    We have proposed a waveguide to microstrip line transition, which perpendicularly connects one waveguide into two microstrip lines. It consists of only a waveguide and a dielectric substrate with copper foils. A backshort waveguide for typical transitions is not needed. Additionally, the transition does not require via holes on the substrate. These innovations simplify the structure and the manufacturing process. We assume that our transition and antennas are co-located on the substrate. We reduced the undesirable radiation from the transition so as not to contaminate the desirable radiation pattern. In this paper, we address output phase of our transition. Since the transition has two MSL output ports connecting to different radiation elements, the phase error between two dividing signals leads to beam shift in the radiation pattern. Unfortunately, misalignment of etching pattern between copper layers of the substrate is unavoidable. The structural asymmetry causes the phase error. In order to tolerate the misalignment, we propose to add a pair of open stubs to the transition. We show that the structure drastically stabilizes the output phase. Though the stubs create some extra radiation, we confirm that the impact is not significant. Moreover, we fabricate and measure a prototype antenna that uses the transition. In the case of with stubs, the radiation pattern is unchanged even if the misalignment is severe.

  • A Simple f0/2f0 Microstrip Diplexer with Low and Wideband Insertion-Loss Characteristics

    Ken'ichi HOSOYA  Ryosuke EMURA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/06/22
      Vol:
    E104-C No:1
      Page(s):
    11-21

    An f0/2f0 (frequency ratio of two) microstrip diplexer with simple circuit configuration as well as low and wideband insertion-loss characteristics is proposed. It is a parallel combination of a coupled line for f0 port and a wave-trap circuit composed of a transmission line and an open stub for 2f0 port. All the lines and stub have a quarter-wave length for f0. Matching circuits are not needed. Circuit and electro-magnetic simulation results prove that the proposed f0/2f0 diplexer exhibits well-balanced properties of insertion loss (IL), IL bandwidth, and isolation, as compared to conventional simple f0/2f0 diplexers composed of two wave-trap circuits or two coupled lines. The proposed diplexer is fabricated on a resin substrate in a microstrip configuration at frequencies of f0/2f0=2.5/5 GHz. Measured results are in good agreement with simulations and support the above conclusion. The proposed diplexer exhibits ILs of 0.46/0.56 dB with 47/47% relative bandwidth (for f0/2f0), which are lower and wider than f0/2f0 diplexers in literatures at the same frequency bands.

  • Theoretical Analysis of Center Frequency and Bandwidth Tunable Resonator Employing Coupled Line and Switches

    Kunihiro KAWAI  Hiroshi OKAZAKI  Shoichi NARAHASHI  Mizuki MOTOYOSHI  Noriharu SUEMATSU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E102-C No:8
      Page(s):
    612-621

    This paper presents a theoretical analysis of a tunable resonator using a coupled line and switches for the first time. The tunable resonator has the capability to tune its resonant frequency and bandwidth. The resonator has two suitable features on its tunable capability. The first feature is that the resonator retains its resonant frequency during bandwidth tuning. The second feature is that the on-state switch for tuning the bandwidth does not affect the insertion loss at the resonant frequency. These features are theoretically confirmed by its mathematically derived input impedance. The results from electromagnetic simulation and measurement of the fabricated tunable resonator also confirm these features. The fabricated tunable resonator changes the resonant frequency from 2.6 GHz to 6.4 GHz and bandwidth between 9% and 55%.

  • 12- and 21-GHz Dual-Band Dual-Circularly Polarized Offset Parabolic Reflector Antenna Fed by Microstrip Antenna Arrays for Satellite Broadcasting Reception Open Access

    Masafumi NAGASAKA  Masaaki KOJIMA  Hisashi SUJIKAI  Jiro HIROKAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/01/09
      Vol:
    E102-B No:7
      Page(s):
    1323-1333

    In December 2018, satellite broadcasting for 4K/8K ultra-high-definition television (UHDTV) will begin in Japan. It will be provided in the 12-GHz (11.7 to 12.75GHz) band with right- and left-hand circular polarizations. BSAT-4a, a satellite used for broadcasting UHDTV, was successfully launched in September 2017. This satellite has not only 12-GHz-band right- and left-hand circular polarization transponders but also a 21-GHz-band experimental transponder. The 21-GHz (21.4 to 22.0GHz) band has been allocated as the downlink for broadcasting satellite service in ITU-R Regions 1 (Europe, Africa) and 3 (Asia Pacific). To receive services provided over these two frequency bands and with dual-polarization, we implement and evaluated a dual-band and dual-circularly polarized parabolic reflector antenna fed by 12- and 21-GHz-band microstrip antenna arrays with a multilayer structure. The antenna is used to receive 12- and 21-GHz-band signals from in-orbit satellites. The measured and experimental results prove that the proposed antenna performs as a dual-polarized antenna in those two frequency bands and has sufficient performance to receive satellite broadcasts.

  • Resonant Frequency and Bandwidth Tunable Ring Resonator Using GaAs FET SPST Switches

    Kunihiro KAWAI  Hiroshi OKAZAKI  Shoichi NARAHASHI  Noriharu SUEMATSU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E102-C No:5
      Page(s):
    388-398

    This paper presents a theoretical analysis and experimental confirmation of a tunable ring resonator that can independently change its resonant frequency and bandwidth. The tunable ring resonator comprises a ring resonator, three tunable capacitors, and switches. The resonant frequency changes according to the capacitance of tunable capacitors, and the bandwidth varies by changing the state of the switches. The unique feature of the resonator is that the resonant frequency remains steady when the bandwidth is changed. The fundamental characteristics are shown based on linear circuit simulation and electromagnetic simulation results. The resonator is fabricated using GaAs FET single-pole single-throw switches. The fabricated resonator changes the resonant frequency from 1.5 GHz to 2.0 GHz and the fractional bandwidth from 5% to 30%.

  • Design and Experiment of Via-Less and Small-Radiation Waveguide to Microstrip Line Transitions for Millimeter Wave Radar Modules

    Takashi MARUYAMA  Shigeo UDAGAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/06/04
      Vol:
    E101-B No:12
      Page(s):
    2425-2434

    We propose waveguide to microstrip line transitions for automotive millimeter wave radar modules. The transitions perpendicularly connect one waveguide and one or two microstrip lines. The configuration is simple because it consists of a waveguide and a dielectric substrate with copper foils. Additionally the transitions do not need via holes on the substrate. It leads to lower costs and improved reliability. We have already proposed a via-less transition by using multi-stage impedance transformers. The impedance transformers are used for suppressing undesirable radiation from the transition as well as impedance matching. In this paper, we propose a new transition with the microstrip lines on the long axis of the waveguide while most transitions place the microstrip lines on the minor axis (electric field direction) of the waveguide. Though our transition uses bend structures of microstrip lines, which basically cause radiation, our optimized configuration can keep small radiation. We also design a transition with a single microstrip line. The proposed transition with 2 microstrip lines can be modified to the 1 microstrip line version with minimum radiation loss. Electromagnetic simulations confirm the small radiation levels expected. Additionally we fabricate the transitions with back to back structure and determine the transmission and radiation performance. We also fabricates the transition for a patch array antenna. We confirm that the undesirable radiation from the proposed transition is small and the radiation pattern of the array antenna is not worsen by the transition.

  • Flexible and Printable Phase Shifter with Polymer Actuator for 12-GHz Band

    Fumio SATO  Michio YOKOYAMA  Yudai USAMI  Kentaro YAZAWA  Takao KUKI  Shizuo TOKITO  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    767-774

    The authors have proposed a new type of flexible and printable 12GHz-band phase shifter using polymer actuator for the first time. Polymer bending actuator was used as a termination device of a reflection-type 3-dB, 90° hybrid coupler as the phase-shift control unit which controls the electrical length of the waveguide for microwave signals by the applied bias voltage. The microstrip line circuit of the device has been fabricated using low-cost screen printing method. Polymer bending actuator having three-layer stacking structure, in which an ionic liquid electrolyte layer is sandwiched with two conductive network composite layers, was formed by wet processes. The authors have confirmed that the phase shift could be controlled in analog by low driving voltages of 2-7 V for the actuator with a insertion loss of 2.73 dB. This phase shifter can be integrated with flexible patch antenna and the current flexible polymer electronics devices such as transistors.

  • Dual-Circularly Polarized Offset Parabolic Reflector Antenna with Microstrip Antenna Array for 12-GHz Band Satellite Broadcasting Reception

    Masafumi NAGASAKA  Susumu NAKAZAWA  Shoji TANAKA  

     
    PAPER-Antennas

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    340-348

    Japan Broadcasting Corporation (NHK) started test satellite broadcasting of ultra-high-definition television (UHDTV) on August 1st, 2016. The test broadcasting is being provided in the 12-GHz (11.7 to 12.75GHz) band with right-hand circular polarization. In 2018, left-hand circular polarization in the same frequency band will be used for satellite broadcasting of UHDTV. Because UHDTV satellite broadcasting uses the 16APSK modulation scheme, which requires a higher carrier-to-noise ratio than that used for HDTV in Japan, it is important to mitigate the cross-polarization interference. Therefore, we fabricated and tested a dual-circularly polarized offset parabolic reflector antenna that has a feed antenna composed of a 2×2 microstrip antenna array, which is sequentially rotated to enhance the polarization purity. Measured results showed that the fabricated antenna complied with our requirements, a voltage standing wave ratio of less than 1.4, antenna gain of 34.5dBi (i.e., the aperture efficiency was 69%), and cross-polarization discrimination of 28.7dB.

  • Slow-Wave Half Mode Substrate Integrated Waveguide with Partially Polyline Loading

    Haiyan JIN  Xinlin XUE  Ran CHENG  Hailu JIN  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E99-C No:12
      Page(s):
    1323-1326

    In this paper, a novel slow-wave half mode substrate integrated waveguide (SW-HMSIW) structure is presented and experimentally demonstrated, and some interesting slow-wave propagation effects are obtained. The SW-HMSIW enables the cutoff frequency reduction and phase velocity to decrease without sacrificing its performance at the same lateral dimension, which equivalently reduces the lateral dimension and longitudinal size at the same frequency. Specifically, with the different loading microstrip width, a cutoff frequency reduction of 16%, 25%, 30% is achieved compared to the conventional HMSIW at the same lateral dimension. Both lateral and longitudinal size reductions significantly extend the operating range of SIW structures to low frequency region.

  • Miniaturization of Double Stub Resonators Using Lumped-Element Capacitors for MMIC Applications

    Shinichi TANAKA  Takao KATAYOSE  Hiroki NISHIZAWA  Ken'ichi HOSOYA  Ryo ISHIKAWA  Kazuhiko HONJO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E99-C No:7
      Page(s):
    830-836

    We present a design method for miniaturizing double stub resonators that are potentially very useful for wide range of applications but have limited usage for MMICs due to their large footprint. The analytical design model, which we introduce in this paper, allows for determining the capacitances needed to achieve the targeted shrinking ratio while maintaining the original loaded-Q before miniaturization. To verify the model, 18-GHz stub resonators that are around 40% of the original sizes were designed and fabricated in GaAs MMIC technology. The effectiveness of the proposed technique is also demonstrated by a 9-GHz low phase-noise oscillator using the miniaturized resonator.

  • Design of Pattern Reconfigurable Printed Yagi-Uda Antenna

    Chainarong KITTIYANPUNYA  Monai KRAIRIKSH  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    19-26

    This paper presents a pattern reconfigurable Yagi-Uda antenna on an FR-4 printed circuit board (PCB) for 2.435-2.465GHz-frequency short-range radiocommunication devices. To realize the antenna, pin diodes are attached onto the antenna's driven elements and parasitic elements. The direction of the beam is shifted by alternating the pin diodes status between ON and OFF to induce a quad-directional operation so that E-plane maximum beams are formed in the directions of 135°, 45°, 310° and 225° (i.e. regions 1, 2, 3, 4), respectively. A series of simulations are performed on four parameters: microstrip-to-CPS (coplanar stripline), inter-parasitic spacing, parasitic length, and modes of parasitic elements (i.e. director/reflector) to determine the optimal antenna design. A prototype is fabricated based on the optimal simulation results. The experiments showed very good agreement between the simulation and measured results with regard to the reflection coefficients, radiation patterns and gains for all four beams.

  • Radiation Properties of a Linearly Polarized Radial Line Microstrip Antenna Array with U-Slots

    Yuki KIMURA  Sakuyoshi SAITO  Yuichi KIMURA  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2059-2065

    This paper presents the design and radiation properties of a linearly polarized radial line microstrip antenna array (RL-MSAA) with U-slot circular microstrip antennas. A circular microstrip antenna (C-MSA) with U-shaped slot is used as a radiation element of the RL-MSAA. Radiation phase of the U-slot C-MSA is controlled by tuning the radius of the C-MSA and dimensions of the U-slot on the C-MSA; therefore, the desired phase distribution of the RL-MSAA can be realized. In this paper, a linearly polarized RL-MSAA with three concentric rows of C-MSAs at a spacing of 0.65 wavelengths is designed for 12GHz operation. In order to realize uniform phase distribution, the U-slot C-MSAs are arranged for inner two rows and normal C-MSAs are arranged for the termination row. Validity of the linearly polarized RL-MSAA with the U-slot C-MSAs for radiation phase control is demonstrated by simulation and measurement.

  • Tunable Resonator Employing Comb-shaped Transmission Line and Semiconductor Switches

    Kunihiro KAWAI  Daisuke KOIZUMI  Hiroshi OKAZAKI  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E97-C No:8
      Page(s):
    795-802

    This paper presents a simple-structured tunable resonator employing semiconductor switches that can change its resonant frequency discretely but precisely. The tunable resonator comprises a transmission line with a comb-shaped pattern and multiple single-pole single-throw (SPST) switches placed between the teeth of the comb-shaped pattern. The resonator changes its resonant frequency according to the switch states, by controlling the path length carrying a high frequency current. The characteristics of the proposed resonator are evaluated through both method of moment electromagnetic simulation and fabrication, using GaAs FET SPST switches. The fabricated resonator changes its resonant frequency from 1.63,GHz to 1.85,GHz. This paper also introduces two circuit designs based on the proposed resonator that expands the tuning range of the resonant frequency or the number of resonant frequencies to be obtained.

  • Radiation Properties of a Linearly Polarized Radial Line MSA Array with Stacked Circular Patch Elements

    Yuki KIMURA  Sakuyoshi SAITO  Yuichi KIMURA  

     
    PAPER-Antennas

      Vol:
    E96-B No:10
      Page(s):
    2440-2447

    This paper presents design and radiation properties of a radial line microstrip antenna array (RL-MSAA) for linear polarization. A stacked circular microstrip antenna (C-MSA) is used as a radiation element for the RL-MSAA. Radiation phase of the stacked C-MSA is controlled by tuning radii of the lower and upper patches, therefore, the desired phase distribution of the RL-MSAA can be designed. In this paper, a linearly polarized RL-MSAA with three concentric rows of the stacked C-MSAs at a spacing of 0.65 wavelengths for uniform aperture distribution is designed and tested in 12GHz. The experimental results reveal that validity of the linearly polarized RL-MSAA with the stacked C-MSAs for radiation phase control is demonstrated.

1-20hit(190hit)