The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] moment(168hit)

1-20hit(168hit)

  • Backhaul Prioritized Point-to-Multi-Point Wireless Transmission Using Orbital Angular Momentum Multiplexing

    Tomoya KAGEYAMA  Jun MASHINO  Doohwan LEE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/21
      Vol:
    E107-B No:1
      Page(s):
    232-243

    Orbital angular momentum (OAM) multiplexing technology is being investigated for high-capacity point-to-point (PtP) wireless transmission toward beyond 5G systems. OAM multiplexing is a spatial multiplexing technique that utilizes the twisting of electromagnetic waves. Its advantage is that it reduces the computational complexity of the signal processing on spatial multiplexing. Meanwhile point-to-multi point (PtMP) wireless transmission, such as integrated access and backhaul (IAB) will be expected to simultaneously accommodates a high-capacity prioritized backhaul-link and access-links. In this paper, we study the extension of OAM multiplexing transmission from PtP to PtMP to meet the above requirements. We propose a backhaul prioritized resource control algorithm that maximizes the received signal-to-interference and noise ratio (SINR) of the access-links while maintaining the backhaul-link. The proposed algorithm features adaptive mode selection that takes into account the difference in the received power of each OAM mode depending on the user equipment position and the guaranteed power allocation of the backhaul capacity. We then evaluate the performance of the proposed method through computer simulation. The results show that throughput of the access-links improved compared with the conventional multi-beam multi-user multi-input multi-output (MIMO) techniques while maintaining the throughput of the backhaul-link above the required value with minimal feedback information.

  • Numerical Derivation of Design Guidelines for Tightness and Shaking Amplitude of Vibrating Intrinsic Reverberation Chamber by Method of Moment

    Makoto HARA  Jianqing WANG  Frank LEFERINK  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2023/06/02
      Vol:
    E106-B No:11
      Page(s):
    1173-1181

    Vibrating intrinsic reverberation chamber is being used as an in-situ EMC test equipment for large and complex systems such as automobiles and aircrafts. In this paper, the stirring conditions, such as tightness and shaking amplitude of the walls, of a vibrating intrinsic reverberation chamber have been analyzed using the method of moments. From the viewpoint of quantitative evaluation of the flexible moving walls configuration, it was found that the random electromagnetic environment can be generated under the stirring conditions of loose configuration and a shaking amplitude more than one eighth of the wavelength at the test frequency above the lowest usable frequency.

  • Deep Learning Based Low Complexity Symbol Detection and Modulation Classification Detector

    Chongzheng HAO  Xiaoyu DANG  Sai LI  Chenghua WANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/01/24
      Vol:
    E105-B No:8
      Page(s):
    923-930

    This paper presents a deep neural network (DNN) based symbol detection and modulation classification detector (SDMCD) for mixed blind signals detection. Unlike conventional methods that employ symbol detection after modulation classification, the proposed SDMCD can perform symbol recovery and modulation identification simultaneously. A cumulant and moment feature vector is presented in conjunction with a low complexity sparse autoencoder architecture to complete mixed signals detection. Numerical results show that SDMCD scheme has remarkable symbol error rate performance and modulation classification accuracy for various modulation formats in AWGN and Rayleigh fading channels. Furthermore, the proposed detector has robust performance under the impact of frequency and phase offsets.

  • Volume Integral Equations Combined with Orthogonality of Modes for Analysis of Two-Dimensional Optical Slab Waveguide

    Masahiro TANAKA  

     
    PAPER

      Pubricized:
    2021/10/18
      Vol:
    E105-C No:4
      Page(s):
    137-145

    Volume integral equations combined with orthogonality of guided mode and non-guided field are proposed for the TE incidence of two-dimensional optical slab waveguide. The slab waveguide is assumed to satisfy the single mode condition. The formulation of the integral equations are described in detail. The matrix equation obtained by applying the method of moments to the integral equations is shown. Numerical results for step, gap, and grating waveguides are given. They are compared to published papers to validate the proposed method.

  • DNN-Based Low-Musical-Noise Single-Channel Speech Enhancement Based on Higher-Order-Moments Matching

    Satoshi MIZOGUCHI  Yuki SAITO  Shinnosuke TAKAMICHI  Hiroshi SARUWATARI  

     
    PAPER-Speech and Hearing

      Pubricized:
    2021/07/30
      Vol:
    E104-D No:11
      Page(s):
    1971-1980

    We propose deep neural network (DNN)-based speech enhancement that reduces musical noise and achieves better auditory impressions. The musical noise is an artifact generated by nonlinear signal processing and negatively affects the auditory impressions. We aim to develop musical-noise-free speech enhancement methods that suppress the musical noise generation and produce perceptually-comfortable enhanced speech. DNN-based speech enhancement using a soft mask achieves high noise reduction but generates musical noise in non-speech regions. Therefore, first, we define kurtosis matching for DNN-based low-musical-noise speech enhancement. Kurtosis is the fourth-order moment and is known to correlate with the amount of musical noise. The kurtosis matching is a penalty term of the DNN training and works to reduce the amount of musical noise. We further extend this scheme to standardized-moment matching. The extended scheme involves using moments whose orders are higher than kurtosis and generalizes the conventional musical-noise-free method based on kurtosis matching. We formulate standardized-moment matching and explore how effectively the higher-order moments reduce the amount of musical noise. Experimental evaluation results 1) demonstrate that kurtosis matching can reduce musical noise without negatively affecting noise suppression and 2) newly reveal that the sixth-moment matching also achieves low-musical-noise speech enhancement as well as kurtosis matching.

  • Circuit Modeling of Wireless Power Transfer System in the Vicinity of Perfectly Conducting Scatterer

    Nozomi HAGA  Jerdvisanop CHAKAROTHAI  Keisuke KONNO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/06/22
      Vol:
    E103-B No:12
      Page(s):
    1411-1420

    The impedance expansion method (IEM) is a circuit-modeling technique for electrically small devices based on the method of moments. In a previous study, a circuit model of a wireless power transfer (WPT) system was developed by utilizing the IEM and eigenmode analysis. However, this technique assumes that all the coupling elements (e.g., feeding loops and resonant coils) are in the absence of neighboring scatters (e.g., bodies of vehicles). This study extends the theory of the IEM to obtain the circuit model of a WPT system in the vicinity of a perfectly conducting scatterer (PCS). The numerical results show that the proposed method can be applied to the frequencies at which the dimension of the PCS is less than approximately a quarter wavelength. In addition, the yielded circuit model is found to be valid at the operating frequency band.

  • On the Calculation of the G-MGF for Two-Ray Fading Model with Its Applications in Communications

    Jinu GONG  Hoojin LEE  Rumin YANG  Joonhyuk KANG  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/05/15
      Vol:
    E103-A No:11
      Page(s):
    1308-1311

    Two-ray (TR) fading model is one of the fading models to represent a worst-case fading scenario. We derive the exact closed-form expressions of the generalized moment generating function (G-MGF) for the TR fading model, which enables us to analyze the numerous types of wireless communication applications. Among them, we carry out several analytical results for the TR fading model, including the exact ergodic capacity along with asymptotic expressions and energy detection performance. Finally, we provide numerical results to validate our evaluations.

  • Angular Momentum Spectrum of Electromagnetic Wave

    Chao ZHANG  Jin JIANG  

     
    LETTER-Analog Signal Processing

      Vol:
    E103-A No:4
      Page(s):
    715-717

    Angular Momentum (AM) has been considered as a new dimension of wireless transmissions as well as the intrinsic property of Electro-Magnetic (EM) waves. So far, AM is utilized as a discrete mode not only in the quantum states, but also in the statistical beam forming. Traditionally, the continuous value of AM is ignored and only the quantized mode number is identified. However, the recent discovery on electrons in spiral motion producing twisted radiation with AM, including Spin Angular Momentum (SAM) and Orbital Angular Momentum (OAM), proves that the continuous value of AM is available in the statistical EM wave beam. This is also revealed by the so-called fractional OAM, which is reported in optical OAM beams. Then, as the new dimension with continuous real number field, AM should turn out to be a certain spectrum, similar to the frequency spectrum usually in the wireless signal processing. In this letter, we mathematically define the AM spectrum and show the applications in the information theory analysis, which is expected to be an efficient tool for the future wireless communications with AM.

  • Generative Moment Matching Network-Based Neural Double-Tracking for Synthesized and Natural Singing Voices

    Hiroki TAMARU  Yuki SAITO  Shinnosuke TAKAMICHI  Tomoki KORIYAMA  Hiroshi SARUWATARI  

     
    PAPER-Speech and Hearing

      Pubricized:
    2019/12/23
      Vol:
    E103-D No:3
      Page(s):
    639-647

    This paper proposes a generative moment matching network (GMMN)-based post-filtering method for providing inter-utterance pitch variation to singing voices and discusses its application to our developed mixing method called neural double-tracking (NDT). When a human singer sings and records the same song twice, there is a difference between the two recordings. The difference, which is called inter-utterance variation, enriches the performer's musical expression and the audience's experience. For example, it makes every concert special because it never recurs in exactly the same manner. Inter-utterance variation enables a mixing method called double-tracking (DT). With DT, the same phrase is recorded twice, then the two recordings are mixed to give richness to singing voices. However, in synthesized singing voices, which are commonly used to create music, there is no inter-utterance variation because the synthesis process is deterministic. There is also no inter-utterance variation when only one voice is recorded. Although there is a signal processing-based method called artificial DT (ADT) to layer singing voices, the signal processing results in unnatural sound artifacts. To solve these problems, we propose a post-filtering method for randomly modulating synthesized or natural singing voices as if the singer sang again. The post-filter built with our method models the inter-utterance pitch variation of human singing voices using a conditional GMMN. Evaluation results indicate that 1) the proposed method provides perceptible and natural inter-utterance variation to synthesized singing voices and that 2) our NDT exhibits higher double-trackedness than ADT when applied to both synthesized and natural singing voices.

  • High Performance OAM Communication Exploiting Port-Azimuth Effect of Loop Antennas Open Access

    Hiroto OTSUKA  Ryohei YAMAGISHI  Akira SAITOU  Hiroshi SUZUKI  Ryo ISHIKAWA  Kazuhiko HONJO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/06/17
      Vol:
    E102-B No:12
      Page(s):
    2267-2275

    In this paper, we show that the orbital angular momentum (OAM) communication performance with a circular loop antenna array can be drastically improved by exploiting the port azimuth effect at the 5-GHz band. The received signal and interference powers are analytically derived with generalized Z-matrices and the perturbation method for short-range OAM communication. The resulting formulas show that the interference power can be drastically suppressed by selecting the proper combination of port azimuths. We also explain the mechanism behind the reduction in interference power. For the obtained port azimuth combination, the simulated and measured transmission isolations at 1cm are better than 24.0 and 23.6dB at 5.3GHz, respectively. Furthermore, to estimate performance in 2×2 MIMO communication, constellations for 64-QAM are estimated. Measured EVMs are less than 3% where signals are clearly discriminated without any signal processing. For long-range OAM communication using paraboloids, the optimum port azimuth combination is estimated by monitoring the current distribution. For the obtained combination of the port azimuths, simulated and measured transmission isolations at 125cm are better than 15.7 and 12.0dB at 5.3GHz, respectively. The measured isolation for short and long ranges are improved by 9.2 and 4.5dB, respectively, compared with the data for the combination of the identical port azimuth.

  • Method of Moments Based on Electric Field Integral Equation for Three-Dimensional Metallic Waveguide: Single Mode Waveguide

    Masahiro TANAKA  Kazuo TANAKA  

     
    PAPER

      Vol:
    E102-C No:1
      Page(s):
    30-37

    This paper presents the method of moments based on electric field integral equation which is capable of solving three-dimensional metallic waveguide problem with no use of another method. Metals are treated as perfectly electric conductor. The integral equation is derived in detail. In order to validate the proposed method, the numerical results are compared with those in a published paper. Three types of waveguide are considered: step discontinuity waveguide, symmetrical resonant iris waveguide, and unsymmetrical resonant iris waveguide. The numerical results are also verified by the law of conservation of energy.

  • Analysis of a Wireless Power Transfer System by the Impedance Expansion Method Using Fourier Basis Functions

    Nozomi HAGA  Masaharu TAKAHASHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/01/18
      Vol:
    E101-B No:7
      Page(s):
    1708-1715

    The impedance expansion method (IEM), which has been previously proposed by the authors, is a circuit-modeling technique for electrically-very-small devices. This paper provides a new idea on the principle of undesired radiation in wireless power transfer systems by employing IEM. In particular, it is shown that the undesired radiation is due to equivalent infinitesimal dipoles and loops of the currents on the coils.

  • Accurate Error Probability Analysis of MCIK-OFDM with a Low-Complexity Detection over TWDP Fading Channels

    Donggu KIM  Hoojin LEE  Joonhyuk KANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/12/06
      Vol:
    E101-B No:6
      Page(s):
    1347-1351

    This paper derives highly accurate and effective closed-form formulas for the average upper bound on the pairwise error probability (PEP) of the multi-carrier index keying orthogonal frequency division multiplexing (MCIK-OFDM) system with low-complexity detection (i.e., greedy detection) in two-wave with diffuse power (TWDP) fading channels. To be specific, we utilize an exact moment generating function (MGF) of the signal-to-noise ratio (SNR) under TWDP fading to guarantee highly precise investigations of error probability performance; existing formulas for average PEP employ the approximate probability density function (PDF) of the SNR for TWDP fading, thereby inducing inherent approximation error. Moreover, some special cases of TWDP fading are also considered. To quantitatively reveal the achievable modulation gain and diversity order, we further derive asymptotic formulas for the upper bound on the average PEP. The obtained asymptotic expressions can be used to rapidly estimate the achievable error performance of MCIK-OFDM with the greedy detection over TWDP fading in high SNR regimes.

  • Passive Element Approximation of Equivalent Circuits by the Impedance Expansion Method

    Nozomi HAGA  Masaharu TAKAHASHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/10/16
      Vol:
    E101-B No:4
      Page(s):
    1069-1075

    The impedance expansion method (IEM), which was previously proposed by the authors, is a circuit-modeling technique for electrically-very-small devices. The equivalent circuits derived by the IEM include dependent voltage sources proportional to the powers of the frequency. However, the previous report did not describe how circuit simulators could realize such dependent voltage sources. This paper shows how this can be achieved by approximating the equivalent circuit using only passive elements.

  • Circuit Modeling Technique for Electrically-Very-Small Devices Based on Laurent Series Expansion of Self-/Mutual Impedances

    Nozomi HAGA  Masaharu TAKAHASHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/08/14
      Vol:
    E101-B No:2
      Page(s):
    555-563

    This paper proposes a circuit modeling technique for electrically-very-small devices, e.g. electrodes for intrabody communications, coils for wireless power transfer systems, high-frequency transformers, etc. The proposed technique is based on the method of moments and can be regarded as an improved version of the partial element equivalent circuit method.

  • Accuracy Improvement of Characteristic Basis Function Method by Using Multilevel Approach

    Tai TANAKA  Yoshio INASAWA  Naofumi YONEDA  Hiroaki MIYASHITA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:2
      Page(s):
    96-103

    A method is proposed for improving the accuracy of the characteristic basis function method (CBFM) using the multilevel approach. With this technique, CBFs taking into account multiple scattering calculated for each block (IP-CBFs; improved primary CBFs) are applied to CBFM using a multilevel approach. By using IP-CBFs, the interaction between blocks is taken into account, and thus it is possible to reduce the number of CBFs while maintaining accuracy, even if the multilevel approach is used. The radar cross section (RCS) of a cube, a cavity, and a dielectric sphere were analyzed using the proposed CBFs, and as a result it was found that accuracy is improved over the conventional method, despite no major change in the number of CBFs.

  • Radio Wave Shadowing by Two-Dimensional Human BodyModel

    Mitsuhiro YOKOTA  Yoshichika OHTA  Teruya FUJII  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/07/06
      Vol:
    E101-B No:1
      Page(s):
    195-202

    The radio wave shadowing by a two-dimensional human body is examined numerically as the scattering problem by using the Method of Moments (MoM) in order to verify the equivalent human body diameter. Three human body models are examined: (1) a circular cylinder, (2) an elliptical cylinder, and (3) an elliptical cylinder with two circular cylinders are examined. The scattered fields yields by the circular cylinder are compared with measured data. Since the angle of the model to an incident wave affects scattered fields in models other than a circular cylinder, the models of an elliptical cylinder and an elliptical cylinder with two circular cylinders are converted into a circular cylinder of equivalent diameter. The frequency characteristics for the models are calculated by using the equivalent diameter.

  • Orbital Angular Momentum (OAM) Multiplexing: An Enabler of a New Era of Wireless Communications Open Access

    Doohwan LEE  Hirofumi SASAKI  Hiroyuki FUKUMOTO  Ken HIRAGA  Tadao NAKAGAWA  

     
    INVITED PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2017/01/12
      Vol:
    E100-B No:7
      Page(s):
    1044-1063

    This paper explores the potential of orbital angular momentum (OAM) multiplexing as a means to enable high-speed wireless transmission. OAM is a physical property of electro-magnetic waves that are characterized by a helical phase front in the propagation direction. Since the characteristic can be used to create multiple orthogonal channels, wireless transmission using OAM can enhance the wireless transmission rate. Comparisons with other wireless transmission technologies clarify that OAM multiplexing is particularly promising for point-to-point wireless transmission. We also clarify three major issues in OAM multiplexing: beam divergence, mode-dependent performance degradation, and reception (Rx) signal-to-noise-ratio (SNR) reduction. To mitigate mode-dependent performance degradation we first present a simple but practical Rx antenna design method. Exploiting the fact that there are specific location sets with phase differences of 90 or 180 degrees, the method allows each OAM mode to be received at its high SNR region. We also introduce two methods to address the Rx SNR reduction issue by exploiting the property of a Gaussian beam generated by multiple uniform circular arrays and by using a dielectric lens antenna. We confirm the feasibility of OAM multiplexing in a proof of concept experiment at 5.2 GHz. The effectiveness of the proposed Rx antenna design method is validated by computer simulations that use experimentally measured values. The two new Rx SNR enhancement methods are validated by computer simulations using wireless transmission at 60 GHz.

  • Physical-Weight-Based Measurement Methodology Suppressing Noise or Reducing Test Time for High-Resolution Low-Speed ADCs

    Mitsutoshi SUGAWARA  Zule XU  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E100-C No:6
      Page(s):
    576-583

    We propose a statistical processing method to reduce the time of chip test of high-resolution and low-speed analog-to-digital converters (ADCs). For this kinds of ADCs, due to the influence of noise, conventional histogram or momentum method suffers from long time to collect required data for averaging. The proposed method, based on physically weighing the ADC, intending to physical weights in ADC/DAC under test. It can suppress white noise to 1/22 than conventional method in a case of 10bit binary ADC. Or it can reduce test data to 1/8 or less, which directly means to reduce measuring time to 1/8 or less. In addition, it earns complete Integrated Non-Linearity (INL) and Differential Non-linearity (DNL) even missing codes happens due to less data points. In this report, we theoretically describe how to guarantee missing codes at lacked measured data points.

  • Statistical Analysis of Phase-Only Correlation Functions between Real Signals with Stochastic Phase-Spectrum Differences

    Shunsuke YAMAKI  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:5
      Page(s):
    1097-1108

    This paper proposes the statistical analysis of phase-only correlation functions between two real signals with phase-spectrum differences. For real signals, their phase-spectrum differences have odd-symmetry with respect to frequency indices. We assume phase-spectrum differences between two signals to be random variables. We next derive the expectation and variance of the POC functions considering the odd-symmetry of the phase-spectrum differences. As a result, the expectation and variance of the POC functions can be expressed by characteristic functions or trigonometric moments of the phase-spectrum differences. Furthermore, it is shown that the peak value of the POC function monotonically decreases and the sidelobe values monotonically increase as the variance of the phase-spectrum differences increases.

1-20hit(168hit)