Ryuta YAMANAKA Taka FUJITA Hideyuki SOTOBAYASHI Atsushi KANNO Tetsuya KAWANISHI
We evaluated the single side-band phase noise of a 40 GHz beat signal generated by two free-running lasers. This allowed us to verify the utility of the two free-running lasers is verified as a light source for a next-generation radio-over-fiber system using frequency such as those in the millimeter-wave and terahertz bands. We also measured the phase noise of a frequency quadrupler using a Mach-Zehnder modulator for comparison. The phase noise of the two free-running lasers and the frequency quadrupler are -63.85 and -95.22 dBc/Hz at a 10 kHz offset frequency, respectively.
Hongying LIU Xin JIN Yukiyasu TSUNOO Satoshi GOTO
Electromagnetic emissions leak confidential data of cryptographic devices. Electromagnetic Analysis (EMA) exploits such emission for cryptanalysis. The performance of EMA dramatically decreases when correlated noise, which is caused by the interference of clock network and exhibits strong correlation with encryption signal, is present in the acquired EM signal. In this paper, three techniques are proposed to reduce the correlated noise. Based on the observation that the clock signal has a high variance at the signal edges, the first technique: single-sample Singular Value Decomposition (SVD), extracts the clock signal with only one EM sample. The second technique: multi-sample SVD is capable of suppressing the clock signal with short sampling length. The third one: averaged subtraction is suitable for estimation of correlated noise when background samplings are included. Experiments on the EM signal during AES encryption on the FPGA and ASIC implementation demonstrate that the proposed techniques increase SNR as much as 22.94 dB, and the success rates of EMA show that the data-independent information is retained and the performance of EMA is improved.
It is important to characterize the distributional property and the long-range dependency of traffic arrival processes in modeling Internet traffic. To address this problem, we propose a long-range dependent traffic model using the unbounded Johnson distribution. Using the proposed model, a sequence of traffic rates with the desired four quantiles and Hurst parameter can be generated. Numerical studies show how well the sequence of traffic rates generated by the proposed model mimics that of the real traffic rates using a publicly available Internet traffic trace.
Hiromitsu AWANO Hiroshi TSUTSUI Hiroyuki OCHI Takashi SATO
Random telegraph noise (RTN) is a phenomenon that is considered to limit the reliability and performance of circuits using advanced devices. The time constants of carrier capture and emission and the associated change in the threshold voltage are important parameters commonly included in various models, but their extraction from time-domain observations has been a difficult task. In this study, we propose a statistical method for simultaneously estimating interrelated parameters: the time constants and magnitude of the threshold voltage shift. Our method is based on a graphical network representation, and the parameters are estimated using the Markov chain Monte Carlo method. Experimental application of the proposed method to synthetic and measured time-domain RTN signals was successful. The proposed method can handle interrelated parameters of multiple traps and thereby contributes to the construction of more accurate RTN models.
Seyed Amir HASHEMI Hassan GHAFOORIFARD Abdolali ABDIPOUR
In this paper, using the Linear Time Variant (LTV) phase noise model and considering higher order harmonics generated by the oscillator output signal, a more general formula for transformation of the excess phase to the output signal is presented. Despite the basic LTV model which assumes that the total carrier power is within the fundamental harmonic, in the proposed model, the total carrier power is assumed to be distributed among all output harmonics. For the first harmonic, the developed expressions reduce to the basic LTV formulas. Simulation and experimental results are used to ensure the validity of the model.
Yasumichi TAKAI Masanori HASHIMOTO Takao ONOYE
This paper investigates power gating implementations that mitigate power supply noise. We focus on the body connection of power-gated circuits, and examine the amount of power supply noise induced by power-on rush current and the contribution of a power-gated circuit as a decoupling capacitance during the sleep mode. To figure out the best implementation, we designed and fabricated a test chip in 65 nm process. Experimental results with measurement and simulation reveal that the power-gated circuit with body-tied structure in triple-well is the best implementation from the following three points; power supply noise due to rush current, the contribution of decoupling capacitance during the sleep mode and the leakage reduction thanks to power gating.
Monica FIGUEIREDO Rui L. AGUIAR
This paper presents a model to estimate jitter insertion and accumulation in clock repeaters. We propose expressions to estimate, with low computational effort, both static and dynamic clock jitter insertion in repeaters with different sizes, interconnects and slew-rates. It requires only the pre-characterization of a reference repeater, which can be accomplished with a small number of simulations or measurements. Furthermore, we propose expressions for dynamic jitter accumulation that considers the dual nature of power and ground noise impact on delay. The complete model can be used to replace time-consuming transient noise simulations when evaluating jitter in clock distribution systems, and provide valuable insights regarding the impact of design parameters on jitter. Presented results show that our models can estimate jitter insertion and accumulation with an error within 10% of simulation results, for typical designs, and accurately reflect the impact of changing design parameters.
Kumpei YOSHIKAWA Yuta SASAKI Kouji ICHIKAWA Yoshiyuki SAITO Makoto NAGATA
Capacitor charging modeling efficiently and accurately represents power consumption current of CMOS digital circuits and actualizes co-simulation of AC power noise including the interaction with on-chip and on-board integrated power delivery network (PDN). It is clearly demonstrated that the AC power noise is dominantly characterized by the frequency-dependent impedance of PDN and also by the operating frequency of circuits as well. A 65 nm CMOS chip exhibits the AC power noise components in substantial relation with the parallel resonance of the PDN seen from on-chip digital circuits. An on-chip noise monitor measures in-circuit power supply voltage, while a near-field magnetic probing derives on-board power supply current. The proposed co-simulation well matches the power noise measurements. The proposed AC noise co-simulation will be essentially applicable in the design of PDNs toward on-chip power supply integrity (PSI) and off-chip electromagnetic compatibility (EMC).
Conventional entropy measure is derived from full-band (range from 0 Hz to 4 kHz); however, it can not clearly describe the spectrum variability during voice-activity. Here we propose a novel concept of adaptive long-term sub-band entropy ( ALT-SubEnpy ) measure and combine it with a multi-thresholding scheme for voice activity detection. In detail, the ALT-SubEnpy measure developed with four part parameters of sub-entropy which uses different long-term spectral window length at each part. Consequently, the proposed ALT-SubEnpy -based algorithm recursively updates the four adaptive thresholds on each part. The proposed ALT-SubEnpy-based VAD method is shown to be an effective method while working at variable noise-level condition.
In this letter, we consider a control problem of a chain of integrators where there is an uncertain delay in the input and sensor noise. This is an output feedback control result over [10] in which a state feedback control is suggested. The several generalized features are: i) output feedback control is developed instead of full state feedback control, ii) uncertain delay in the input is allowed, iii) all states are derived to be arbitrarily small under uncertain sensor noise.
Go TANAKA Noriaki SUETAKE Eiji UCHINO
In this paper, impulse noise removal for digital images is handled. It is well-known that switching-type processing is effective for the impulse noise removal. In the process, noise-corrupted pixels are first detected, and then, filtering is applied to the detected pixels. This switching process prevents distorting original signals. A noise detector is of course important in the process, a filter for pixel value restoration is also important to obtain excellent results. The authors have proposed a local similarity-based filter (LSF). It utilizes local similarity in a digital image and its capability against restoration of orderly regions has shown in the previous paper. In this paper, first, further experiments are carried out and properties of the LSF are revealed. Although LSF is inferior to an existing filter when disorderly regions are processed and evaluated by the peak signal-to-noise ratio, its outputs are subjectively adequate even in the case. If noise positions are correctly detected, capability of the LSF is guaranteed. On the other hand, some errors may occur in actual noise detection. In that case, LSF sometimes fails to restoration. After properties are examined, we propose two effective extensions to the LSF. First one is for computational cost reduction and another is for color image processing. The original LSF is very time consuming, and in this paper, computational cost reduction is realized introducing a search area. Second proposal is the vector LSF (VLSF) for color images. Although color images can be processed using a filter, which is for monochrome images, to each color component, it sometimes causes color drift. Hence vector processing has been investigated so far. However, existing vector filters do not excel in preservation of orderly pattern although color drift is suppressed. Our proposed VLSF is superior both in orderly pattern preservation and color drift suppression. Effectiveness of the proposed extensions to LSF is verified through experiments.
In this letter we propose a practical sensing-based opportunistic spectrum sharing scheme for cognitive radio (CR) downlink MIMO systems. Multi-antennas are exploited at the secondary transmitter to opportunistically access the primary spectrum and effectively achieve a balance between secondary throughput maximization and mitigation of interference probably caused to primary radio link. We first introduce a brief secondary frame structure, in which a sensing phase is exploited to estimate the effective interference channel. According to the sensing result and taking the interference caused by the primary link into account, we propose an enhanced signal-to-leakage-and-noise ratio (SLNR)-based precoding scheme for the secondary transmitter. Compared to conventional schemes where perfect knowledge of the channels over which the CR transmitter interferes with the primary receiver (PR) is assumed, our proposed scheme shows its superiority and simulation results validate this.
Jaeho JEONG Gia Khanh TRAN Kiyomichi ARAKI
Single front-end architecture with parasitic antenna element (PAE) in compact array system has been proposed for enhancing spectral efficiency and miniaturizing the receiver. Although most of studies paid attention to design optimal receiver with antenna mutual coupling on fading correlation, relatively little attention has been paid to noise. In this paper, we propose a low noise model for single front-end MIMO receiver system with PAE which includes arbitrary signal and noise coupling. The proposed model articulates physical noise sources and relates their spatial correlation with array receive antennas, parasitic element, front-end and matching circuit. A matching circuit is designed to achieve minimum noise figure. After that, the optimal PAE value is derived to maximize channel capacity. We present numerical analysis to verify the proposed system on certain conditions.
Hiroyasu SATO Kohei KURIYAMA Kunio SAWAYA
In order to improve the detection performance in passive millimeter-wave (PMMW) imaging, a new method forwarding a null in the direction of human body and objects is proposed. The forward-nulling PMMW imaging using a dielectric tube occupied by cooling water placed near the focus line of a parabolic cylinder are performed. It is shown experimentally that the contrast between human body and conducting objects such as a conducting plate and a conducting sphere is improved by the presence of the cooling dielectric tube and parabolic cylinder.
Yunjung LEE Pil Un KIM Jin Ho CHO Yongmin CHANG Myoung Nam KIM
In this paper, a single-channel adaptive noise canceller (SCANC) is proposed to enhance heart sounds during auscultation. Heart sounds provide important information about the condition of the heart, but other sounds interfere with heart sounds during auscultation. The adaptive noise canceller (ANC) is widely used to reduce noises from biomedical signals, but it is not suitable for enhancing auscultatory sounds acquired by a stethoscope. While the ANC needs two inputs, a stethoscope provides only one input. Other approaches, such as ECG gating and wavelet de-noising, are rather complex and difficult to implement as real-time systems. The proposed SCANC uses a single-channel input based on Heart Sound Inherency Indicator and reference generator. The architecture is simple, so it can be easily implemented in real-time systems. It was experimentally confirmed that the proposed SCANC is efficient for heart sound enhancement and is robust against the heart rate variations.
This paper presents a response time acceleration technique in a high-gain capacitive-feedback frontend amplifier (FA) for high output impedance sensors. Using an auxiliary amplifier as a unity-gain buffer, a sample-and-hold capacitor which is used for band-limiting and sampling the FA output is driven at the beginning of the transient response to make the response faster and then it is re-charged directly by the FA output. A condition and parameters for the response time acceleration using this technique while maintaining the noise level unaffected are discussed. Theoretical analysis and simulation results show that the response time can be less than half of the case without the acceleration technique for the specified settling error of less than 0.5%.
In this letter, we consider a control problem of a chain of integrators by output feedback under sensor noise. First, we introduce a measurement output feedback controller which drives all states and output of the considered system to arbitrarily small bounds. Then, we suggest a measurement output feedback controller coupled with a switching gain-scaling factor in order to improve the transient response and retain the same arbitrarily small ultimate bounds as well. An example is given to show the advantage of the proposed control method.
Yen-Ching CHANG Liang-Hwa CHEN Li-Chun LAI Chun-Ming CHANG
Discrete-Time fractional Brownian motion (DFBM) and its increment process, called discrete-time fractional Gaussian noise (DFGN), are usually used to describe natural and biomedical phenomena. These two processes are dominated by one parameter, called the Hurst exponent, which needs to be estimated in order to capture the characteristics of physical signals. In the previous work, a variance estimator for estimating the Hurst exponent directly via DFBM was provided, and it didn't consider point selection for linear regression. Since physical signals often appear to be DFGN-type, not DFBM-type, it is imperative to first transform DFGN into DFBM in real applications. In this paper, we show that the variance estimator possesses another form, which can be estimated directly via the autocorrelation functions of DFGN. The above extra procedure of transforming DFGN into DFBM can thus be avoided. On the other hand, the point selection for linear regression is also considered. Experimental results show that 4-point linear regression is almost optimal in most cases. Therefore, our proposed variance estimator is more efficient and accurate than the original one mentioned above. Besides, it is also superior to AR and MA methods in speed and accuracy.
A novel long-term sub-band entropy (LT-SubEntropy) measure, which uses improved long-term spectral analysis and sub-band entropy, is proposed for voice activity detection (VAD). Based on the measure, we can accurately exploit the inherent nature of the formant structure on speech spectrogram (the well-known as voiceprint). Results show that the proposed VAD is superior to existing standard VAD methods at low SNR levels, especially at variable-level noise.
Kazuaki MIYANAGA Yoshiki KAYANO Hiroshi INOUE
The circuit switching device by the electrical contact needs the high reliability and long lifetime. The very important factor for the high reliability, long lifetime and electromagnetic noise of the electrical contact is to suppress the duration and electromagnetic noise of arc discharge. Usually, the suppression of arc duration method is applying the external magnetic field. But, this method was not able to suppress the metallic arc duration and increased the voltage fluctuation at arc duration. Therefore, the new method for suppressing the duration and noise for electrical contact is expected. In this paper, a new method for suppressing duration and EM noise of arc discharge by applying housing pressure is proposed. To investigate the availability of proposed method, the measurement and some considerations on arc duration, voltage-fluctuation and current noise up to GHz frequency band generated by breaking contact in the applied pressure relay housing are reported. Firstly, voltage waveform and duration of the arc are measured. The effects of the pressure in the relay housing on the duration of the metallic and gaseous phase arcs are discussed. Secondary, voltage fluctuation, the spectrogram of contact voltage and current noise up to GHz frequency band are discussed. In the results, the proposed method with applying pressure makes shorter both durations of metallic and gaseous phases. The shorter duration of metallic phase is an advantage of the proposed method beyond the applying external magnetic field. As the housing pressure is increase, the voltage fluctuation and current noise becomes smalls. The proposed method can suppress the voltage fluctuation as well as arc duration. Consequently, the proposed method is on of the good solution to suppress the duration and electromagnetic noise of the arc discharge from electrical contact and result of this study indicates the basic considerations necessary to ensure good lifetime and EMC designs for electrical contacts.