The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] noise(1036hit)

181-200hit(1036hit)

  • Threshold-Based I-Q Diversity Combining Scheme for UHF RFID Readers and Its Performance

    Sung Sik NAM  Jeong Woo CHOI  Sung Ho CHO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:8
      Page(s):
    1630-1639

    In this paper, a threshold-based I-Q diversity combining scheme for ultra-high frequency (UHF) radio frequency identification (RFID) readers with a quadrature receiver is proposed in the aspect of improving the tag detection performance. In addition, the performance of the proposed scheme is evaluated as the closed-form expressions. In particular, its statistical characteristics are detailed and its performance is compared to that of conventional schemes over independent and identically distributed Rician fading conditions in terms of average signal-to-noise ratio (SNR), bit error rate (BER), and the average number of required combining process. Numerical results indicate that the proposed scheme enables processing power control through threshold control while meeting the required quality of service compared to conventional schemes.

  • Output Amplification Feedback Control of an Input-Delayed Chain of Integrators under General Sensor Noise

    Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Vol:
    E98-A No:8
      Page(s):
    1834-1837

    We consider a chain of integrators system that has an uncertain delay in the input. Also, there is a measurement noise in the feedback channel that only noisy output is available. We develop a new output feedback control scheme along with amplification such that the ultimate bounds of all states and output of the controlled system can be made arbitrarily small. We note that the condition imposed on the sensor noise is quite general over the existing results such that the sensor noise is uncertain and is only required to be bounded by a known bound. The benefit of our control method is shown via an example.

  • A TMR Mitigation Method Based on Readback Signal in Bit-Patterned Media Recording

    Wiparat BUSYATRAS  Chanon WARISARN  Lin M. M. MYINT  Piya KOVINTAVEWAT  

     
    PAPER-Storage Technology

      Vol:
    E98-C No:8
      Page(s):
    892-898

    Track mis-registration (TMR) is one of the major problems in high-density magnetic recording systems such as bit-patterned media recording (BPMR). In general, TMR results from the misalignment between the center of the read head and that of the main track, which can deteriorate the system performance. Although TMR can be handled by a servo system, this paper proposes a novel method to alleviate the TMR effect, based on the readback signal. Specifically, the readback signal is directly used to estimate a TMR level and is then further processed by the suitable target and equalizer designed for such a TMR level. Simulation results indicate that the proposed method can sufficiently estimate the TMR level and then helps improve the system performance if compared to the conventional receiver that does not employ a TMR mitigation method, especially when an areal density is high and/or a TMR level is large.

  • Investigation of Electromagnetic Noise Coupling in a Board with a Digital-RF Mixed IC by Measurement and Analysis

    Kenta TSUKAMOTO  Mizuki IWANAMI  Eiji HANKUI  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1182-1187

    In this paper the amplitude probability distribution (APD) measurement method is applied to evaluate noise coupling to an antenna on an evaluation board that uses mixed RF and digital signals of an IC. We analytically investigate noise coupling path to the antenna where the correlation coefficient matches the APD curve of the evaluation board. Moreover, in order to verify the analysis results, the noise coupling path in the board is evaluated by measurements involving In-phase/Quadrature (I/Q) signals as well as electromagnetic simulations. As a result, we demonstrate that APD method is effective in evaluating a degree of noise coupling from an IC to multiple antennas on the board, and confirm that the intensity of noise coupling to each antenna is affected greatly by the board layout patterns.

  • Evaluation of Impact on Digital Radio Systems by Measuring Amplitude Probability Distribution of Interfering Noise Open Access

    Yasushi MATSUMOTO  Kia WIKLUNDH  

     
    INVITED PAPER

      Vol:
    E98-B No:7
      Page(s):
    1143-1155

    This paper presents a method for evaluating the maximum bit error probability (BEP) of a digital communication system subjected to interference by measuring the amplitude probability distribution (APD) of the interfering noise. Necessary conditions for the BEP evaluation are clarified both for the APD measuring receiver and the communication receiver considered. A method of defining emission limits is presented in terms of APD so that the worst BEP of a communication system does not exceed a required permissible value. The methods provide a theoretical basis for a wide variety of applications such as emission requirements in compliance testing, dynamic spectrum allocations, characterization of an electromagnetic environment for introducing new radio systems, and evaluation of intra-system interference.

  • Forward Wave Analysis of PCB Power Supply Planes above 1GHz

    Umberto PAOLETTI  Yasumaro KOMIYA  Takashi SUGA  Hideki OSAKA  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1196-1203

    Power supply noise generated by integrated circuits is one of the major sources of electromagnetic radiation from printed circuit boards (PCB). The reduction of power supply noise can be realized by means of devices that bypass the current among power supply planes, such as bypass capacitors and ground vias. In the present work, the effect of current bypass devices on the far field radiation from multilayer PCBs is represented in terms of the ratio between the far field after and before their introduction, and it is estimated by means of the power transported by the ‘radiation effective forward wave’ in infinite power supply planes. This approach is computationally very efficient and yelds improved EMC designs for power supply planes in realistic PCBs, for example by selecting the position of stitching ground vias. The results are confirmed by a comparison with commercial tools. Forward wave analysis can be used also to study the vertical distribution of the power supply noise in multilayer PCBs. This allows to understand some important noise propagation mechanisms that are related to power and signal integrity as well, and to take low-cost countermeasures at early stage of PCB design.

  • Active and Reactive Power in Stochastic Resonance for Energy Harvesting

    Madoka KUBOTA  Ryo TAKAHASHI  Takashi HIKIHARA  

     
    LETTER-Noise and Vibration

      Vol:
    E98-A No:7
      Page(s):
    1537-1539

    A power allocation to active and reactive power in stochastic resonance is discussed for energy harvesting from noise. It is confirmed that active power can be increased at stochastic resonance, in the same way of the relationship between energy and phase at an appropriate setting in resonance.

  • Resonant Power Supply Noise Reduction by STO Capacitors Fabricated on Interposer

    Toru NAKURA  Masahiro KANO  Masamitsu YOSHIZAWA  Atsunori HATTORI  Kunihiro ASADA  

     
    PAPER-Electronic Circuits

      Vol:
    E98-C No:7
      Page(s):
    734-740

    This paper demonstrates the resonant power supply noise reduction effects of STO thin film decoupling capacitors, which are embedded in interposers. The on-interposer STO capacitor consists of SrTiO2 whose dielectric constant is about 20 and is sandwitched by Cu films in an interposer. The on-interposer STO capacitors are directly connected to the LSI PADs so that they provide large decoupling capacitance without package leadframe/bonding wire inductance, resulting in the reduction of the resonant power supply noise. The measured power supply waveforms show significant reduction of the power supply noise, and the Shmoo plots also show the contribution of the STO capacitors to the robust operations of LSIs.

  • Adaptively Phase-Shift Controlled Self-Injection Locked VCO

    Masaomi TSURU  Kengo KAWASAKI  Koji TSUTSUMI  Eiji TANIGUCHI  

     
    PAPER-Active Circuits/Devices/Monolithic Microwave Integrated Circuits

      Vol:
    E98-C No:7
      Page(s):
    677-684

    An adaptively phase-shift controlled self-injection locked VCO is described. A self-injection locking technique is effective to reduce phase noise. However, a conventional self-injection locked VCO has drawbacks of discontinuous frequency sweep which means narrow bandwidth, and large variation of phase noise. Our proposed adaptively phase-shift controlled self-injection locked VCO overcomes these drawbacks by detecting phase-shift of the self-injection feedback and controlling the phase-shift depending on sweep of the oscillation frequency. This paper describes analysis of relationships between the discontinuity and feedback phase-shift of the self-injection locked VCO. In addition, a VCO-IC which includes a Ka-band VCO and a phase detector is designed and fabricated in 0.18um SiGe BiCMOS technology. Measurement results of the proposed self-injection locked VCO using the fabricated IC show the improvement to the drawbacks. In the proposed self-injection locked VCO, the oscillation frequency sweep is continuous and the phase noise variation is less than 5 dB.

  • Secrecy Capacity of Wiretap Channels with Additive Colored Gaussian Noise

    Hachiro FUJITA  

     
    PAPER-Information Theory

      Vol:
    E98-A No:6
      Page(s):
    1276-1287

    Wyner has shown in his seminal paper on (discrete memoryless) wiretap channels that if the channel between the sender and an eavesdropper is a degraded version of the channel between the sender and the legitimate receiver, then the sender can reliably and securely transmit a message to the receiver, while the eavesdropper obtains absolutely no information about the message. Later, Leung-Yan-Cheong and Hellman extended Wyner's result to the case where the noise is white Gaussian. In this paper we extend the white Gaussian wiretap channel to the colored Gaussian case and show the finite block length secrecy capacity of colored Gaussian wiretap channels. We also show the asymptotic secrecy capacity of a specific colored Gaussian wiretap channel for which optimal power allocation can be found by a water-filling procedure.

  • A Constant-Current-Controlled Class-C Voltage-Controlled Oscillator using Self-Adjusting Replica Bias Circuit

    Teerachot SIRIBURANON  Wei DENG  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E98-C No:6
      Page(s):
    471-479

    This paper presents a constant-current-controlled class-C VCO using a self-adjusting replica bias circuit. The proposed class-C VCO is more suitable in real-life applications as it can maintain constant current which is more robust in phase noise performance over variation of gate bias of cross-coupled pair comparing to a traditional approach without amplitude modulation issue. The proposed VCO is implemented in 180,nm CMOS process. It achieves a tuning range of 4.8--4.9,GHz with a phase noise of -121,dBc/Hz at 1,MHz offset. The power consumption of the core oscillators is 4.8,mW and an FoM of -189,dBc/Hz is achieved.

  • Technology of FinFET for High RF and Analog/Mixed-Signal Performance Circuits Open Access

    Tatsuya OHGURO  Satoshi INABA  Akio KANEKO  Kimitoshi OKANO  

     
    INVITED PAPER

      Vol:
    E98-C No:6
      Page(s):
    455-460

    In this paper, we discuss the process, layout and device technologies of FinFET to obtain high RF and analog/mixed-signal performance circuits. The fin patterning due to Side-wall transfer (SWT) technique is useful to not only fabricate narrow fin line but also suppress the fin width variation comparing with ArF and EB lithography. The H$_{2}$ annealing after Si etching is useful for not only to improve the mobility of electron and hole but also to reduce flicker noise of FinFET. The noise decreases as the scaling of fin width and that of FinFET with below 50,nm fin width is satisfied with the requirement from 25,nm technology node in ITRS roadmap 2013. This lower noise is attributed to the decrease of electric field from the channel to the gate electrode. Additionally, the optimum layout of FinFET is discussed for RF performance. In order to obtain higher f$_{mathrm{T}}$ and f$_{mathrm{max}}$, it is necessary to have the optimized finger length and reduced capacitances between the gate and Si substrate and between gate and source, drain contact region. According to our estimation, the f$_{mathrm{T}}$ of FinFET with the optimized layout should be lower than that of planar MOSFET when the gate length is longer than 10,nm due to larger gate capacitance. In conclusion, FinFET is suitable for high performance digital and analog/mixed-signal circuits. On the other hand, planar MOSFET is better rather than FinFET for RF circuits.

  • Tunable Threshold Voltage of Organic CMOS Inverter Circuits by Electron Trapping in Bilayer Gate Dielectrics

    Toan Thanh DAO  Hideyuki MURATA  

     
    PAPER

      Vol:
    E98-C No:5
      Page(s):
    422-428

    We have demonstrated tunable extit{n}-channel fullerene and extit{p}-channel pentacene OFETs and CMOS inverter circuit based on a bilayer-dielectric structure of CYTOP (poly(perfluoroalkenyl vinyl ether)) electret and SiO$_{2}$. For both OFET types, the $V_{mathrm{th}}$ can be electrically tuned thanks to the charge-trapping at the interface of CYTOP and SiO$_{2}$. The stability of the shifted $V_{mathrm{th}}$ was investigated through monitoring a change in transistor current. The measured transistor current versus time after programming fitted very well with a stretched-exponential distribution with a long time constant up to 10$^{6}$ s. For organic CMOS inverter, after applying the program gate voltages for extit{n}-channel fullerene or extit{p}-channel pentacene elements, the voltage transfer characteristics were shifted toward more positive values, resulting in a modulation of the noise margin. We realized that at a program gate voltage of 60,V for extit{p}-channel OFET, the circuit switched at 4, 8,V, that is close to half supply voltage $V_{mathrm{DD}}$, leading to the maximum electrical noise immunity of the inverter circuit.

  • Noise Tolerant Heart Rate Extraction Algorithm Using Short-Term Autocorrelation for Wearable Healthcare Systems

    Shintaro IZUMI  Masanao NAKANO  Ken YAMASHITA  Yozaburo NAKAI  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

     
    PAPER-Biological Engineering

      Pubricized:
    2015/01/26
      Vol:
    E98-D No:5
      Page(s):
    1095-1103

    This report describes a robust method of instantaneous heart rate (IHR) extraction from noisy electrocardiogram (ECG) signals. Generally, R-waves are extracted from ECG using a threshold to calculate the IHR from the interval of R-waves. However, noise increases the incidence of misdetection and false detection in wearable healthcare systems because the power consumption and electrode distance are limited to reduce the size and weight. To prevent incorrect detection, we propose a short-time autocorrelation (STAC) technique. The proposed method extracts the IHR by determining the search window shift length which maximizes the correlation coefficient between the template window and the search window. It uses the similarity of the QRS complex waveform beat-by-beat. Therefore, it has no threshold calculation process. Furthermore, it is robust against noisy environments. The proposed method was evaluated using MIT-BIH arrhythmia and noise stress test databases. Simulation results show that the proposed method achieves a state-of-the-art success rate of IHR extraction in a noise stress test using a muscle artifact and a motion artifact.

  • Spectral Domain Noise Modeling in Compressive Sensing-Based Tonal Signal Detection

    Chenlin HU  Jin Young KIM  Seung Ho CHOI  Chang Joo KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:5
      Page(s):
    1122-1125

    Tonal signals are shown as spectral peaks in the frequency domain. When the number of spectral peaks is small and the spectral signal is sparse, Compressive Sensing (CS) can be adopted to locate the peaks with a low-cost sensing system. In the CS scheme, a time domain signal is modelled as $oldsymbol{y}=Phi F^{-1}oldsymbol{s}$, where y and s are signal vectors in the time and frequency domains. In addition, F-1 and $Phi$ are an inverse DFT matrix and a random-sampling matrix, respectively. For a given y and $Phi$, the CS method attempts to estimate s with l0 or l1 optimization. To generate the peak candidates, we adopt the frequency-domain information of $ esmile{oldsymbol{s}}$ = $oldsymbol{F} esmile{oldsymbol{y}}$, where $ esmile{y}$ is the extended version of y and $ esmile{oldsymbol{y}}left(oldsymbol{n} ight)$ is zero when n is not elements of CS time instances. In this paper, we develop Gaussian statistics of $ esmile{oldsymbol{s}}$. That is, the variance and the mean values of $ esmile{oldsymbol{s}}left(oldsymbol{k} ight)$ are examined.

  • Blind Carrier Frequency Offset Estimation Based on Weighted Subspace Projection Approach for Interleaved OFDMA Uplink

    Ann-Chen CHANG  Chih-Chang SHEN  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:3
      Page(s):
    878-880

    This letter deals with the carrier frequency offsets (CFO) estimation problem for orthogonal frequency division multiple access (OFDMA) uplink systems. Combined with centro-symmetric (CS) trimmed autocorrelation matrix and weighting subspace projection, the proposed estimator has better estimate performance than MVDR, MUSIC, CS-MUSIC, and ESPRIT estimators, especially in relatively less of OFDMA blocks and low SNR situations. Simulation results are presented to verify the efficiency of the proposed estimator.

  • Cramer-Rao Bounds for Compressive Frequency Estimation

    Xushan CHEN  Xiongwei ZHANG  Jibin YANG  Meng SUN  Weiwei YANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:3
      Page(s):
    874-877

    Compressive sensing (CS) exploits the sparsity or compressibility of signals to recover themselves from a small set of nonadaptive, linear measurements. The number of measurements is much smaller than Nyquist-rate, thus signal recovery is achieved at relatively expense. Thus, many signal processing problems which do not require exact signal recovery have attracted considerable attention recently. In this paper, we establish a framework for parameter estimation of a signal corrupted by additive colored Gaussian noise (ACGN) based on compressive measurements. We also derive the Cramer-Rao lower bound (CRB) for the frequency estimation problems in compressive domain and prove some useful properties of the CRB under different compressive measurements. Finally, we show that the theoretical conclusions are along with experimental results.

  • A Source Model and Experimental Validation for Electromagnetic Noises from Electrostatic Discharge Generator

    Takeshi ISHIDA  Yukihiro TOZAWA  Mutsumu TAKAHASHI  Fengchao XIAO  Yoshio KAMI  Osamu FUJIWARA  Shuichi NITTA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E98-B No:2
      Page(s):
    317-323

    Electrostatic discharge (ESD) generators cause electromagnetic (EM) noises not only at ESD tests but also even before and after the tests. This may provide inconsistent test results, but the mechanism has not been well examined. To explain the mechanism qualitatively, we investigated a generation source model of EM noises from an ESD generator in conjunction with the functional control sequences of built-in relay switches and the DC high voltage power supply. To validate this model, we used a magnetic field probe to measure the induced EM noises before, during, and after contact and air discharges in accordance with the corresponding timing of the functional control sequences. As a result, we confirmed that the EM noises are induced when the relay switches operate before and at ESD testing and after ESD tests for both contact and air discharges. In addition, we found that the noise peaks due to contact discharges increase with charge voltages, and the peaks just before and at the testing are relatively larger than the ones after the tests, while the peaks of the induced noises at the air discharge testing do not always increase with charge voltages, but reach a maximum at 3kV. In addition, the peaks of the induced noises at the air discharge testing become smaller than either the peaks just before the testing and those after the tests at charge voltages above 6kV. This suggests that the EM noises just before ESD testing and after the test may cause the EUT to malfunction when air discharge tests with charge voltages over 6kV are conducted. A new control sequence of the built-in relay switch was also proposed for reducing the EM noises after ESD tests, which was validated through noise measurements.

  • Brain-Inspired Communication Technologies: Information Networks with Continuing Internal Dynamics and Fluctuation Open Access

    Jun-nosuke TERAMAE  Naoki WAKAMIYA  

     
    PAPER

      Vol:
    E98-B No:1
      Page(s):
    153-159

    Computation in the brain is realized in complicated, heterogeneous, and extremely large-scale network of neurons. About a hundred billion neurons communicate with each other by action potentials called “spike firings” that are delivered to thousands of other neurons from each. Repeated integration and networking of these spike trains in the network finally form the substance of our cognition, perception, planning, and motor control. Beyond conventional views of neural network mechanisms, recent rapid advances in both experimental and theoretical neuroscience unveil that the brain is a dynamical system to actively treat environmental information rather passively process it. The brain utilizes internal dynamics to realize our resilient and efficient perception and behavior. In this paper, by considering similarities and differences of the brain and information networks, we discuss a possibility of information networks with brain-like continuing internal dynamics. We expect that the proposed networks efficiently realize context-dependent in-network processing. By introducing recent findings of neuroscience about dynamics of the brain, we argue validity and clues for implementation of the proposal.

  • Low-Peak-Factor Pseudo-White-Noise Sequence Set with Optimal Zero-Correlation Zone

    Takafumi HAYASHI  Takao MAEDA  Shigeru KANEMOTO  Shinya MATSUFUJI  

     
    PAPER-Communication Theory and Signals

      Vol:
    E97-A No:12
      Page(s):
    2343-2351

    The present paper introduces a novel method for the construction of sequences that have a zero-correlation zone. For the proposed sequence set, both the cross-correlation function and the side lobe of the autocorrelation function are zero for phase shifts within the zero-correlation zone. The proposed scheme can generate a set of sequences, each of length 16n2, from an arbitrary Hadamard matrix of order n and a set of 4n trigonometric function sequences of length 2n. The proposed construction can generate an optimal sequence set that satisfies, for a given zero-correlation zone and sequence period, the theoretical bound on the number of members. The peak factor of the proposed sequence set is equal to √2.

181-200hit(1036hit)