Erlin ZENG Shihua ZHU Xuewen LIAO Zhimeng ZHONG Zhenjie FENG
Prior studies on limited feedback (LFB) beamforming in multiple-antenna orthogonal frequency division multiplexing (OFDM) have resorted to Monte-Carlo simulations to evaluate the system performance. This letter proposes a novel analytical framework, based on which the averaged signal-to-noise ratio and the ergodic capacity performance of clustering-based LFB beamforming in multiple-antenna OFDM systems are studied. Simulations are also provided to verify the analysis.
Teruo KAWAMURA Yoshihisa KISHIYAMA Kenichi HIGUCHI Mamoru SAWAHASHI
In the Evolved UTRA (UMTS Terrestrial Radio Access) uplink, single-carrier frequency division multiple access (SC-FDMA) radio access was adopted owing to its advantageous low peak-to-average power ratio (PAPR) feature, which leads to wide coverage area provisioning with limited peak transmission power of user equipments. This paper proposes orthogonal pilot channel generation using the combination of FDMA and CDMA in the SC-FDMA-based Evolved UTRA uplink. In the proposed method, we employ distributed FDMA transmission for simultaneous accessing users with different transmission bandwidths, and employ CDMA transmission for simultaneous accessing users with identical transmission bandwidth. Moreover, we apply a code sequence with a good auto-correlation property such as a Constant Amplitude Zero Auto-Correlation (CAZAC) sequence employing a cyclic shift to increase the number of sequences. Simulation results show that the average packet error rate performance using an orthogonal pilot channel with the combination of FDMA and CDMA in a six-user environment, i.e., four users each with a 1.25-MHz transmission bandwidth and two users each with a 5-MHz transmission bandwidth, employing turbo coding with the coding rate of R = 1/2 and QPSK and 16QAM data modulation coincides well with that in a single-user environment with the same transmission bandwidth. We show that the proposed orthogonal pilot channel structure using the combination of distributed FDMA and CDMA transmissions and the application of the CAZAC sequence is effective in the SC-FDMA-based Evolved UTRA uplink.
Multi-user MIMO (Multiple Input Multiple Output) systems, in which multiple Mobile Stations (MSs) equipped with multiple antennas simultaneously communicate with a Base Station (BS) equipped with multiple antennas, at the same frequency, are attracting attention because of their potential for improved transmission performance in wireless communications. In the uplink of Space Division Multiplexing based multi-user MIMO (multi-user MIMO/SDM) systems that do not require full Channel State Information (CSI) at the transmitters, selecting active MS antennas, which corresponds to scheduling transmit antennas, is an effective technique. The Full search Selection Algorithm based on exhaustive search (FSA) has been studied as an optimal active MS antenna selection algorithm for multi-user MIMO systems. Unfortunately, FSA suffers from extreme computational complexity given large numbers of MSs. To solve this problem, this paper introduces the Gram-Schmidt orthogonalization based Selection Algorithm (GSSA) to uplink multi-user MIMO/SDM systems. GSSA is a suboptimal active MS antenna selection algorithm that offers lower computational complexity than the optimal algorithm. This paper evaluates the transmission performance improvement of GSSA in uplink multi-user MIMO/SDM systems under realistic propagation conditions such as spatially correlated BS antennas and clarifies the effectiveness of GSSA.
This paper presents a novel high-speed, low-complexity two-parallel 128-point radix-24 FFT/IFFT processor for MB-OFDM ultrawideband (UWB) systems. The proposed high-speed, low-complexity FFT architecture can provide a higher throughput rate and low hardware complexity by using a two-parallel data-path scheme and a single-path delay-feedback (SDF) structure. The radix-24 FFT algorithm is also realized in our processor to reduce the number of complex multiplications. The proposed FFT/IFFT processor has been designed and implemented with 0.18-µm CMOS technology in a supply voltage of 1.8 V. The proposed two-parallel FFT/IFFT processor has a throughput rate of up to 900 Msample/s at 450 MHz while requiring much smaller hardware complexity and low power consumption.
Hoojin LEE Jeffrey G. ANDREWS Edward J. POWERS
Space-time block codes (STBCs) from coordinate interleaved orthogonal designs (CIODs) have attracted a great deal of attention due to their full-diversity and linear maximum likelihood (ML) decodability. In this letter, we propose a simple detection technique, particularly for full-rate STBCs from CIODs to overcome the performance degradation caused by time-selective fading channels. Furthermore, we evaluate the effects of time-selective fading channels and imperfect channel estimation on STBCs from CIODs by using a newly-introduced index, the results of which demonstrate that full-rate STBCs from CIODs are more robust against time-selective fading channels than conventional full-rate STBCs.
The problem of joint orthogonal precoding and user scheduling in a multi-user multi-input multi-output (MU-MIMO) downlink system is considered. Based on the theoretics of subspace and vector projection, a novel orthogonal precoding matrix is designed to achieve high sum-rate capacity with low to moderate number of active users and in low SNR regions. With respect to sum-rate capacity, numerical simulations show that the proposed algorithm outperforms the zero-forcing beam-forming (ZFBF) and linear orthogonal beam-forming (OLBF).
Ken TANAKA Hiromichi TOMEBA Fumiyuki ADACHI
Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of orthogonal frequency division multiplexing (OFDM) and time-domain spreading, while multi-carrier code division multiple access (MC-CDMA) is a combination of OFDM and frequency-domain spreading. In MC-CDMA, a good bit error rate (BER) performance can be achieved by using frequency-domain equalization (FDE), since the frequency diversity gain is obtained. On the other hand, the conventional orthogonal MC DS-CDMA fails to achieve any frequency diversity gain. In this paper, we propose a new orthogonal MC DS-CDMA that can obtain the frequency diversity gain by applying FDE. The conditional BER analysis is presented. The theoretical average BER performance in a frequency-selective Rayleigh fading channel is evaluated by the Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation of the orthogonal MC DS-CDMA signal transmission.
A packet detection method for zero-padded orthogonal frequency division multiplexing (OFDM) transmission is presented. The proposed algorithm effectively conducts packet detection by employing both an M-sample time delayed cross correlation value, and a received signal power calculated by using the received input samples corresponding to the zero padding (ZP) intervals or less.
Younghwan JIN Jihyeon KWON Yuro LEE Dongchan LEE Jaemin AHN
In this paper, we analyze the effects of IQ (In-phase/Quadrature-phase) imbalance at both transmitter and receiver of OFDM (Orthogonal Frequency Division Multiplexing) system and show that more diversity gain can be achieved even though there are unwanted IQ imbalance. When mixed sub-carriers within an OFDM symbol due to the IQ imbalance undergo frequency selective channels, additional diversity effects are expected during the demodulation process. Simulation results on the symbol error rate (SER) performance with ML (Maximum Likelihood) and OSIC (Ordered Successive Interference Cancellation) receiver show that significant performance gain can be achieved with the diversity gain caused by the IQ imbalance combined with the frequency selective channels.
This letter deals with computationally efficient maximum-likelihood (ML) detection for the quasi-orthogonal space-time block code (QOSTBC) with four transmit antennas. The proposed ML detector uses a permutation based real-valued equivalent channel matrix representation. As a result, the complexity of ML detection problem is moderated from O(2|A|2) to O(4|A|), where |A| is modulation order. Numerical results show that the proposed ML detector provides ML performance and achieves greatly high computational savings.
Masaaki HARADA Keiji TANIGUCHI
The average bit error rate performances of M-ary orthogonal code shift keying (CSK) in Rician fading environments are analyzed in this letter. CSK is a digital modulation scheme that uses a code set as M-ary signals. In CSK, one code is selected from a code set containing M codes according to the information data. A signal is modulated by using this code and the effect of fading can be reduced by applying interleaving to the elements of the codes. In the analysis, the bit error probability is derived in closed form expression by using the Chernoff bound. The analysis results show that the error probability decreases when the code length is increased and that an arbitrarily small error probability is achieved as the code length approaches infinity, provided that Eb/N0 exceeds 1.42 dB.
In this letter, we analyze symbol error probability (SEP) and diversity gain of orthogonal space-time block codes (OSTBCs) in spatially correlated Rician fading channel. We derive the moment generating function (MGF) of an effective signal-to-noise ratio (SNR) at the receiver and use it to derive the SEP for M-PSK modulation. We use this result to show that the diversity gain is achieved by the product of the rank of the transmit and receive correlation matrix, and the loss in array gain is quantified as a function of the spatial correlation and the line of sight (LOS) component.
Yijing CHU Heping DING Xiaojun QIU
Assuming there are short time periods in which only one source is active, a new approach for source separation is proposed. An affine projection adaptation algorithm with a non-orthogonal constraint shows excellent noise immunity, a high convergence rate, and good tracking capability to efficiently obtain a solution to the separation filters.
Seungyoung PARK Yeonwoo LEE Sangboh YUN
The time division duplex cellular system can support various downlink and uplink traffic ratios by setting the downlink and uplink transmission periods appropriately. However, it causes severe co-channel interference problem when some cells are active in the downlink while the others are in the uplink [2]. To mitigate this problem, a resource allocation scheme combined with sectorization is proposed for orthogonal frequency division multiple access. Simulations demonstrate that the proposed scheme improves both spectral efficiency and outage performance compared to the conventional allocation schemes.
For coherent detection, decoding Orthogonal Space-Time Block Codes (OSTBC) requires full channel state information at the receiver, which basically is obtained by channel estimation. However, in practical systems, channel estimation errors are inevitable and may degrade the system performance more as the number of antennas increases. This letter shows that, using fewer receive antennas can enhance the performance of OSTBC systems in presence of channel estimation errors. Furthermore, a novel adaptive receive antenna selection scheme, which adaptively adjusts the number of receive antennas, is proposed. Performance evaluation and numerical examples show that the proposed scheme improves the performance obviously.
A novel low-complexity iterative receiver for coded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is proposed in this letter. The iterative receiver uses the parallel interference cancellation (PIC)-maximum ratio combining (MRC) detector for MIMO-OFDM detection, which is a popular alternative to the minimum mean square error (MMSE) detector due to its lower computational complexity. However, we have found that the conventional PIC-MRC detector tends to underestimate the magnitude of its output log likelihood ratios (LLRs). Based on this discovery, we propose to multiply these LLRs by a constant factor, which is optimized according to the extrinsic information transfer (EXIT) chart of the soft-in soft-out (SISO) detector. Simulation results show that the proposed scheme significantly improves the performance of the PIC-MRC-based receiver with little additional cost in computational complexity, allowing it to closely approach the performance of receiver using the much more complex MMSE detector.
In this paper, we present a new fast Fourier transform (FFT) algorithm to reduce the table size of twiddle factors required in pipelined FFT processing. The table size is large enough to occupy significant area and power consumption in long-point FFT processing. The proposed algorithm can reduce the table size to half, compared to the radix-22 algorithm, while retaining the simple structure. To verify the proposed algorithm, a 2048-point pipelined FFT processor is designed using a 0.18 µm CMOS process. By combining the proposed algorithm and the radix-22 algorithm, the table size is reduced to 34% and 51% compared to the radix-2 and radix-22 algorithms, respectively. The FFT processor occupies 1.28 mm2 and achieves a signal-to-quantization-noise ratio (SQNR) of more than 50 dB.
Hoojin LEE Robert W. HEATH, Jr. Edward J. POWERS
Full-diversity transmission for space-time block codes (STBCs) with multiple transmit antennas can be achieved by using coordinate interleaved orthogonal designs (CIODs). To effectively evaluate the performance of CIODs, we derive union upper and lower bounds on the symbol-error rate (SER) and a corresponding asymptotic diversity order of symmetric structured CIOD, in particular, with two transmit antennas over quasi-static spatially uncorrelated/correlated frequency-nonselective Rayleigh fading channels. Some numerical results are provided to verify our analysis.
We show the equivalence between the conventional frame synchronization in single-carrier systems and integer part estimation of frequency offset in OFDM systems and propose an efficient synchronization scheme. The proposed scheme achieves both OFDM symbol/frame timing and frequency offset estimation with only one well-designed OFDM training symbol, while previous synchronization algorithms need two OFDM training symbols at least. Numerical analysis shows that the proposed frequency estimator nearly achieves the Cramér-Rao lower bound for the variance of the frequency offset estimate, despite the reduction in the training sequence length.
The present paper introduces an integrated construction of binary sequences having a zero-correlation zone. The cross-correlation function and the side-lobe of the auto-correlation function of the proposed sequence set is zero for the phase shifts within the zero-correlation zone. The proposed method enables more flexible design of the binary zero-correlation zone sequence set with respect to its member size, length, and width of zero-correlation zone. Several previously reported sequence construction methods of binary zero-correlation zone sequence sets can be explained as special cases of the proposed method.