Tomoko K. MATSUSHIMA Shoichiro YAMASAKI Hirokazu TANAKA
Recently, complex orthogonal variable spreading factor (OVSF) codes based on polyphase orthogonal codes have been proposed to support multi-user/multi-rate data transmission services in synchronous direct-sequence code-division multiple access (DS-CDMA) systems. This study investigates the low signal-envelope fluctuation property of the complex OVSF codes in terms of transmission signal trajectories. In addition, a new method is proposed to suppress the envelope fluctuation more strongly at the expense of reducing the number of spreading sequences of the codes.
Rui SUN Zi YANG Lei ZHANG Yiheng YU
Person images captured by surveillance cameras in real scenes often have low resolution (LR), which suffers from severe degradation in recognition performance when matched with pre-stocked high-resolution (HR) images. There are existing methods which typically employ super-resolution (SR) techniques to address the resolution discrepancy problem in person re-identification (re-ID). However, SR techniques are intended to enhance the human eye visual fidelity of images without caring about the recovery of pedestrian identity information. To cope with this challenge, we propose an orthogonal depth feature decomposition network. And we decompose pedestrian features into resolution-related features and identity-related features who are orthogonal to each other, from which we design the identity-preserving loss and resolution-invariant loss to ensure the recovery of pedestrian identity information. When compared with the SOTA method, experiments on the MLR-CUHK03 and MLR-VIPeR datasets demonstrate the superiority of our method.
Xiaolin HOU Wenjia LIU Juan LIU Xin WANG Lan CHEN Yoshihisa KISHIYAMA Takahiro ASAI
5G has achieved large-scale commercialization across the world and the global 6G research and development is accelerating. To support more new use cases, 6G mobile communication systems should satisfy extreme performance requirements far beyond 5G. The physical layer key technologies are the basis of the evolution of mobile communication systems of each generation, among which three key technologies, i.e., duplex, waveform and multiple access, are the iconic characteristics of mobile communication systems of each generation. In this paper, we systematically review the development history and trend of the three key technologies and define the Non-Orthogonal Physical Layer (NOPHY) concept for 6G, including Non-Orthogonal Duplex (NOD), Non-Orthogonal Multiple Access (NOMA) and Non-Orthogonal Waveform (NOW). Firstly, we analyze the necessity and feasibility of NOPHY from the perspective of capacity gain and implementation complexity. Then we discuss the recent progress of NOD, NOMA and NOW, and highlight several candidate technologies and their potential performance gain. Finally, combined with the new trend of 6G, we put forward a unified physical layer design based on NOPHY that well balances performance against flexibility, and point out the possible direction for the research and development of 6G physical layer key technologies.
Tomonari KURAYAMA Teruyuki MIYAJIMA Yoshiki SUGITANI
Non-orthogonal multiple access (NOMA) allows several users to multiplex in the power-domain to improve spectral efficiency. To further improve its performance, it is desirable to reduce inter-user interference (IUI). In this paper, we propose a downlink asynchronous NOMA (ANOMA) scheme applicable to frequency-selective channels. The proposed scheme introduces an intentional symbol offset between the multiplexed signals to reduce IUI, and it employs cyclic-prefixed single-carrier transmission with frequency-domain equalization (FDE) to reduce inter-symbol interference. We show that the mean square error for the FDE of the proposed ANOMA scheme is smaller than that of a conventional NOMA scheme. Simulation results show that the proposed ANOMA with appropriate power allocation achieves a better sum rate compared to the conventional NOMA.
Taichi YAMAGAMI Satoshi DENNO Yafei HOU
In this paper, we propose a non-orthogonal multiple access with adaptive resource allocation. The proposed non-orthogonal multiple access assigns multiple frequency resources for each device to send packets. Even if the number of devices is more than that of the available frequency resources, the proposed non-orthogonal access allows all the devices to transmit their packets simultaneously for high capacity massive machine-type communications (mMTC). Furthermore, this paper proposes adaptive resource allocation algorithms based on factor graphs that adaptively allocate the frequency resources to the devices for improvement of the transmission performances. This paper proposes two allocation algorithms for the proposed non-orthogonal multiple access. This paper shows that the proposed non-orthogonal multiple access achieves superior transmission performance when the number of the devices is 50% greater than the amount of the resource, i.e., the overloading ratio of 1.5, even without the adaptive resource allocation. The adaptive resource allocation enables the proposed non-orthogonal access to attain a gain of about 5dB at the BER of 10-4.
The application of compressed sensing (CS) theory to non-orthogonal multiple access (NOMA) systems has been investigated recently. As described in this paper, we propose a quality-of-service (QoS)-aware, low-complexity, CS-based user selection and power allocation scheme with adaptive resource block selection for downlink NOMA systems, where the tolerable interference threshold is designed mathematically to achieve a given QoS requirement by being relaxed to a constrained l1 norm optimization problem. The proposed scheme adopts two adaptive resource block (RB) selection algorithms that assign proper RB to user pairs, i.e. max-min channel assignment and two-step opportunistic channel assignment. Simulation results show that the proposed scheme is more effective at improving the user rate than other reference schemes while reducing the required complexity. The QoS requirement is approximately satisfied as long as the required QoS value is feasible.
Shiqing QIAN Wenping GE Yongxing ZHANG Pengju ZHANG
Sparse code division multiple access (SCMA) is a non-orthogonal multiple access (NOMA) technology that can improve frequency band utilization and allow many users to share quite a few resource elements (REs). This paper uses the modulation of lattice theory to develop a systematic construction procedure for the design of SCMA codebooks under Gaussian channel environments that can achieve near-optimal designs, especially for cases that consider large-scale SCMA parameters. However, under the condition of large-scale SCMA parameters, the mother constellation (MC) points will overlap, which can be solved by the method of the partial dimensions transformation (PDT). More importantly, we consider the upper bounded error probability of the signal transmission in the AWGN channels, and design a codeword allocation method to reduce the inter symbol interference (ISI) on the same RE. Simulation results show that under different codebook sizes and different overload rates, using two different message passing algorithms (MPA) to verify, the codebook proposed in this paper has a bit error rate (BER) significantly better than the reference codebooks, moreover the convergence time does not exceed that of the reference codebooks.
Shanqi PANG Xiankui PENG Xiao ZHANG Ruining ZHANG Cuijiao YIN
Quantum combinatorial designs are gaining popularity in quantum information theory. Quantum Latin squares can be used to construct mutually unbiased maximally entangled bases and unitary error bases. Here we present a general method for constructing quantum Latin arrangements from irredundant orthogonal arrays. As an application of the method, many new quantum Latin arrangements are obtained. We also find a sufficient condition such that the improved quantum orthogonal arrays [10] are equivalent to quantum Latin arrangements. We further prove that an improved quantum orthogonal array can produce a quantum uniform state.
In this study, we aim to improve the performance of audio source separation for monaural mixture signals. For monaural audio source separation, semisupervised nonnegative matrix factorization (SNMF) can achieve higher separation performance by employing small supervised signals. In particular, penalized SNMF (PSNMF) with orthogonality penalty is an effective method. PSNMF forces two basis matrices for target and nontarget sources to be orthogonal to each other and improves the separation accuracy. However, the conventional orthogonality penalty is based on an inner product and does not affect the estimation of the basis matrix properly because of the scale indeterminacy between the basis and activation matrices in NMF. To cope with this problem, a new PSNMF with cosine similarity between the basis matrices is proposed. The experimental comparison shows the efficacy of the proposed cosine similarity penalty in supervised audio source separation.
Volume integral equations combined with orthogonality of guided mode and non-guided field are proposed for the TE incidence of two-dimensional optical slab waveguide. The slab waveguide is assumed to satisfy the single mode condition. The formulation of the integral equations are described in detail. The matrix equation obtained by applying the method of moments to the integral equations is shown. Numerical results for step, gap, and grating waveguides are given. They are compared to published papers to validate the proposed method.
It is known that quasi-cyclic (QC) codes over the finite field Fq correspond to certain Fq[x]-modules. A QC code C is specified by a generator polynomial matrix G whose rows generate C as an Fq[x]-module. The reversed code of C, denoted by R, is the code obtained by reversing all codewords of C while the dual code of C is denoted by C⊥. We call C reversible, self-orthogonal, and self-dual if R = C, C⊥ ⊇ C, and C⊥ = C, respectively. In this study, for a given C, we find an explicit formula for a generator polynomial matrix of R. A necessary and sufficient condition for C to be reversible is derived from this formula. In addition, we reveal the relations among C, R, and C⊥. Specifically, we give conditions on G corresponding to C⊥ ⊇ R, C⊥ ⊆ R, and C = R = C⊥. As an application, we employ these theoretical results to the construction of QC codes with best parameters. Computer search is used to show that there exist various binary reversible self-orthogonal QC codes that achieve the upper bounds on the minimum distance of linear codes.
Xiaoling YU Yuntao WANG Chungen XU Tsuyoshi TAKAGI
Due to the property of supporting arbitrary operation over the encrypted data, fully homomorphic encryption (FHE) has drawn considerable attention since it appeared. Some FHE schemes have been constructed based on the general approximate common divisor (GACD) problem, which is widely believed intractable. Therefore, studying the GACD problem's hardness can provide proper security parameters for these FHE schemes and their variants. This paper aims to study an orthogonal lattice algorithm introduced by Ding and Tao (Ding-Tao algorithm) to solve the GACD problem. We revisit the condition that Ding-Tao algorithm works and obtain a new bound of the GACD samples' number based on geometric series assumption. Simultaneously, we also give an analysis of the bound given in the previous work. To further verify the theoretical results, we conduct experiments on Ding-Tao algorithm under our bound. We show a comparison with the experimental results under the previous bound, which indicates the success probability under our bound is higher than that of the previous bound with the growth of the bound.
Tingyao WU Zhisong BIE Celimuge WU
The newly proposed orthogonal time frequency space (OTFS) system exhibits excellent error performance on high-Doppler fading channels. However, the rectangular prototype window function (PWF) inherent in OTFS leads to high out-of-band emission (OOBE), which reduces the spectral efficiency in multi-user scenarios. To this end, this paper presents an OTFS system based on bi-orthogonal frequency division multiplexing (OTFS-BFDM) modulation. In OTFS-BFDM systems, PWFs with bi-orthogonal properties can be optimized to provide lower OOBE than OTFS, which is a special case with rectangular PWF. We further derive that the OTFS-BFDM system is sparsely-connected so that the low-complexity message passing (MP) decoding algorithm can be adopted. Moreover, the power spectral density, peak to average power ratio (PAPR) and bit error rate (BER) of the OTFS-BFDM system with different PWFs are compared. Simulation results show that: i) the use of BFDM modulation significantly inhibits the OOBE of OTFS system; ii) the better the frequency-domain localization of PWFs, the smaller the BER and PAPR of OTFS-BFDM system.
Jiao DU Shaojing FU Longjiang QU Chao LI Tianyin WANG Shanqi PANG
In this paper, by using the properties of the cyclic Hadamard matrices of order 4t, an infinite class of (4t-1)-variable 2-resilient rotation symmetric Boolean functions is constructed, and the nonlinearity of the constructed functions are also studied. To the best of our knowledge, this is the first class of direct constructions of 2-resilient rotation symmetric Boolean functions. The spirit of this method is different from the known methods depending on the solutions of an equation system proposed by Du Jiao, et al. Several situations are examined, as the direct corollaries, three classes of (4t-1)-variable 2-resilient rotation symmetric Boolean functions are proposed based on the corresponding sequences, such as m sequences, Legendre sequences, and twin primes sequences respectively.
Shoichiro YAMASAKI Tomoko K. MATSUSHIMA
The present paper proposes orthogonal variable spreading factor codes over finite fields for multi-rate communications. The proposed codes have layered structures that combine sequences generated by discrete Fourier transforms over finite fields, and have various code lengths. The design method for the proposed codes and examples of the codes are shown.
In this letter, we will prove that chaotic binary sequences generated by the tent map and Walsh functions are i.i.d. (independent and identically distributed) and orthogonal to each other.
Kyohei ONO Shoichiro YAMASAKI Shinichiro MIYAZAKI Tomoko K. MATSUSHIMA
Optical code-division multiple-access (CDMA) techniques provide multi-user data transmission services in optical wireless and fiber communication systems. Several signature codes, such as modified prime sequence codes (MPSCs), generalized MPSCs (GMPSCs) and modified pseudo-orthogonal M-sequence sets, have been proposed for synchronous optical CDMA systems. In this paper, a new scheme is proposed for synchronous optical CDMA to increase the number of users and, consequently, to increase the total data rate without increasing the chip rate. The proposed scheme employs a GMPSC and an extended bi-orthogonal code which is a unipolar code generated from a bipolar Walsh code. Comprehensive comparisons between the proposed scheme and several conventional schemes are shown. Moreover, bit error rate performance and energy efficiency of the proposed scheme are evaluated comparing with those of the conventional optical CDMA schemes under atmospheric propagation environment.
Xiao-yu WAN Rui-fei CHANG Zheng-qiang WANG Zi-fu FAN
This paper investigates the sum rate (SR) maximization problem for downlink cooperative non-orthogonal multiple access (C-NOMA) systems with hardware impairments (HIs). The source node communicates with users via a half-duplex amplified-and-forward (HD-AF) relay with HIs. First, we derive the SR expression of the systems under HIs. Then, SR maximization problem is formulated under maximum power of the source, relay, and the minimum rate constraint of each user. As the original SR maximization problem is a non-convex problem, it is difficult to find the optimal resource allocation directly by tractional convex optimization method. We use variable substitution method to convert the non-convex SR maximization problem to an equivalent convex optimization problem. Finally, a joint power and rate allocation based on interior point method is proposed to maximize the SR of the systems. Simulation results show that the algorithm can improve the SR of the C-NOMA compared with the cooperative orthogonal multiple access (C-OMA) scheme.
Chuzo IWAMOTO Tatsuaki IBUSUKI
The art gallery problem is to find a set of guards who together can observe every point of the interior of a polygon P. We study a chromatic variant of the problem, where each guard is assigned one of k distinct colors. The chromatic art gallery problem is to find a guard set for P such that no two guards with the same color have overlapping visibility regions. We study the decision version of this problem for orthogonal polygons with r-visibility when the number of colors is k=2. Here, two points are r-visible if the smallest axis-aligned rectangle containing them lies entirely within the polygon. In this paper, it is shown that determining whether there is an r-visibility guard set for an orthogonal polygon with holes such that no two guards with the same color have overlapping visibility regions is NP-hard when the number of colors is k=2.
This letter proposes a downlink multiple-input multiple-output (MIMO) non-orthogonal multiple access technique that mitigates multi-cell interference (MCI) at cell-edge users, regardless of the number of interfering cells, thereby improving the spectral efficiency. This technique employs specific receive beamforming vectors at the cell-edge users in clusters to minimize the MCI. Based on the receive beamforming vectors adopted by the cell-edge users, the transmit beamforming vectors for a base station (BS) and the receive beamforming vectors for cell-center users are designed to eliminate the inter-cluster interference and maximize the spectral efficiency. As each user can directly obtain its own receive beamforming vector, this technique does not require channel feedback from the users to a BS to design the receive beamforming vectors, thereby reducing the system overhead. We also derive the upper bound of the average sum rate achievable using the proposed technique. Finally, we demonstrate through simulations that the proposed technique achieves a better sum rate performance than the existing schemes and that the derived upper bound is valid.