The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] orthogonal(476hit)

61-80hit(476hit)

  • Parameter Estimation of Fractional Bandlimited LFM Signals Based on Orthogonal Matching Pursuit Open Access

    Xiaomin LI  Huali WANG  Zhangkai LUO  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1448-1456

    Parameter estimation theorems for LFM signals have been developed due to the advantages of fractional Fourier transform (FrFT). The traditional estimation methods in the fractional Fourier domain (FrFD) are almost based on two-dimensional search which have the contradiction between estimation performance and complexity. In order to solve this problem, we introduce the orthogonal matching pursuit (OMP) into the FrFD, propose a modified optimization method to estimate initial frequency and final frequency of fractional bandlimited LFM signals. In this algorithm, the differentiation fractional spectrum which is used to form observation matrix in OMP is derived from the spectrum analytical formulations of the LFM signal, and then, based on that the LFM signal has approximate rectangular spectrum in the FrFD and the correlation between the LFM signal and observation matrix yields a maximal value at the edge of the spectrum (see Sect.3.3 for details), the edge spectrum information can be extracted by OMP. Finally, the estimations of initial frequency and final frequency are obtained through multiplying the edge information by the sampling frequency resolution. The proposed method avoids reconstruction and the traditional peak-searching procedure, and the iterations are needed only twice. Thus, the computational complexity is much lower than that of the existing methods. Meanwhile, Since the vectors at the initial frequency and final frequency points both have larger modulus, so that the estimations are closer to the actual values, better normalized root mean squared error (NRMSE) performance can be achieved. Both theoretical analysis and simulation results demonstrate that the proposed algorithm bears a relatively low complexity and its estimation precision is higher than search-based and reconstruction-based algorithms.

  • Optimal Price-Based Power Allocation Algorithm with Quality of Service Constraints in Non-Orthogonal Multiple Access Networks

    Zheng-qiang WANG  Kun-hao HUANG  Xiao-yu WAN  Zi-fu FAN  

     
    LETTER-Information Network

      Pubricized:
    2019/07/29
      Vol:
    E102-D No:11
      Page(s):
    2257-2260

    In this letter, we investigate the price-based power allocation for non-orthogonal multiple access (NOMA) networks, where the base station (BS) can admit the users to transmit by pricing their power. Stackelberg game is utilized to model the pricing and power purchasing strategies between the BS and the users. Based on backward induction, the pricing problem of the BS is recast into the non-convex power allocation problem, which is equivalent to the rate allocation problem by variable replacement. Based on the equivalence problem, an optimal price-based power allocation algorithm is proposed to maximize the revenue of the BS. Simulation results show that the proposed algorithm is superior to the existing pricing algorithm in items of the revenue of BS and the number of admitted users.

  • Unconventional Jamming Scheme for Multiple Quadrature Amplitude Modulations Open Access

    Shaoshuai ZHUANSUN  Jun-an YANG  Cong TANG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2019/04/05
      Vol:
    E102-B No:10
      Page(s):
    2036-2044

    It is generally believed that jamming signals similar to communication signals tend to demonstrate better jamming effects. We believe that the above conclusion only works in certain situations. To select the correct jamming scheme for a multi-level quadrature amplitude modulation (MQAM) signal in a complex environment, an optimal jamming method based on orthogonal decomposition (OD) is proposed. The method solves the jamming problem from the perspective of the in-phase dimension and quadrature dimension and exhibits a better jamming effect than normal methods. The method can construct various unconventional jamming schemes to cope with a complex environment and verify the existing jamming schemes. The Experimental results demonstrate that when the jammer ideally knows the received power at the receiver, the proposed method will always have the optimal jamming effects, and the constructed unconventional jamming scheme has an excellent jamming effect compared with normal schemes in the case of a constellation distortion.

  • New Asymptotically Optimal Optical Orthogonal Signature Pattern Codes from Cyclic Codes

    Lin-Zhi SHEN  

     
    LETTER-Coding Theory

      Vol:
    E102-A No:10
      Page(s):
    1416-1419

    Optical orthogonal signature pattern codes (OOSPCs) have attracted great attention due to their important application in the spatial code-division multiple-access network for image transmission. In this paper, we give a construction for OOSPCs based on cyclic codes over Fp. Applying this construction with the Reed-Solomon codes and the generalized Berlekamp-Justesen codes, we obtain two classes of asymptotically optimal OOSPCs.

  • Channel-Alignment Based Non-Orthogonal Multiple Access Techniques

    Changyong SHIN  Se-Hyoung CHO  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:10
      Page(s):
    1431-1437

    This letter presents a non-orthogonal multiple access (NOMA) technique for a two-cell multiple-input multiple-output (MIMO) system that exploits the alignments of inter-cell interference channels and signal channels within a cluster in a cell. The proposed technique finds combiner vectors for users that align the inter-cell interference channels and the signal channels simultaneously. This technique utilizes the aligned interference and signal channels to obtain precoder matrices for base stations through which each data stream modulated by NOMA can be transmitted to the intended cluster without interference. In addition, we derive the sufficient condition for transmit and receive antenna configurations in the MIMO NOMA systems to eliminate inter-cell interference and inter-cluster interference simultaneously. Because the proposed technique effectively suppresses the inter-cell interference, it achieves a higher degree of freedom than the existing techniques relying on an avoidance of inter-cell interference, thereby obtaining a better sum rate performance in high SNR regions. Furthermore, we present the hybrid MIMO NOMA technique, which combines the MIMO NOMA technique exploiting channel alignment with the existing techniques boosting the received signal powers. Using the benefits from these techniques, the proposed hybrid technique achieves a good performance within all SNR regions. The simulation results successfully demonstrate the effectiveness of the proposed techniques on the sum rate performance.

  • Performance Comparison of Multi-User Shared Multiple Access Scheme in Uplink Channels Open Access

    Eiji OKAMOTO  Manabu MIKAMI  Hitoshi YOSHINO  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1458-1466

    In fifth-generation mobile communications systems (5G), grant-free non-orthogonal multiple access (NOMA) schemes have been considered as a way to accommodate the many wireless connections required for Internet of Things (IoT) devices. In NOMA schemes, both system capacity enhancement and transmission protocol simplification are achieved, and an overload test of more than one hundred percent of the transmission samples over conducted. Multi-user shared multiple access (MUSA) has been proposed as a representative scheme for NOMA. However, the performance of MUSA has not been fully analyzed nor compared to other NOMA or orthogonal multiple access schemes. Therefore, in this study, we theoretically and numerically analyze the performance of MUSA in uplink fading environments and compare it with orthogonal frequency division multiple access (OFDMA), space division multiple access-based OFDMA, low-density signature, and sparse code multiple access. The characteristics and superiority of MUSA are then clarified.

  • Efficient Hybrid DOA Estimation for Massive Uniform Linear Array

    Wei JHANG  Shiaw-Wu CHEN  Ann-Chen CHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:5
      Page(s):
    721-724

    This letter presents an efficient hybrid direction of arrival (DOA) estimation scheme for massive uniform linear array. In this scheme, the DOA estimator based on a discrete Fourier transform (DFT) is first applied to acquire coarse initial DOA estimates for single data snapshot. And then, the fine DOA is accurately estimated through using the iterative search estimator within a very small region. It iteratively searches for correct DOA vector by minimizing the objective function using a Taylor series approximation of the DOA vector with the one initially estimated. Since the proposed scheme does not need to perform eigen-decomposition and spectrum search while maintaining better DOA estimates, it also has low complexity and real-time capability. Simulation results are presented to demonstrate the efficiency of the proposed scheme.

  • Interference Suppression of Partially Overlapped Signals Using GSVD and Orthogonal Projection

    Liqing SHAN  Shexiang MA  Xin MENG  Long ZHOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/11/21
      Vol:
    E102-B No:5
      Page(s):
    1055-1060

    In order to solve the problem in Automatic Identification System (AIS) that the signal in the target slot cannot be correctly received due to partial overlap of signals in adjacent time slots, the paper introduces a new criterion: maximum expected signal power (MESP) and proposes a novel beamforming algorithm based on generalized singular value decomposition (GSVD) and orthogonal projection. The algorithm employs GSVD to estimate the signal subspace, and adopts orthogonal projection to project the received signal onto the orthogonal subspace of the non-target signal. Then, beamforming technique is used to maximize the output power of the target signal on the basis of MESP. Theoretical analysis and simulation results show the effectiveness of the proposed algorithm.

  • Non-Orthogonal Pilot Analysis for Single-Cell Massive MIMO Circumstances

    Pengxiang LI  Yuehong GAO  Zhidu LI  Hongwen YANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/10/05
      Vol:
    E102-B No:4
      Page(s):
    901-912

    This paper analyzes the performance of single-cell massive multiple-input multiple-output (MIMO) systems with non-orthogonal pilots. Specifically, closed-form expressions of the normalized channel estimation error and achievable uplink capacity are derived for both least squares (LS) and minimum mean square error (MMSE) estimation. Then a pilot reconstruction scheme based on orthogonal Procrustes principle (OPP) is provided to reduce the total normalized mean square error (NMSE) of channel estimations. With these reconstructed pilots, a two-step pilot assignment method is formulated by considering the correlation coefficient among pilots to reduce the maximum NMSE. Based on this assignment method, a step-by-step pilot power allocation scheme is further proposed to improve the average uplink signal-to-interference and noise ratio (SINR). At last, simulation results demonstrate the superiority of the proposed approaches.

  • A Generic Construction of Mutually Orthogonal Optimal Binary ZCZ Sequence Sets

    Yubo LI  Shuonan LI  Hongqian XUAN  Xiuping PENG  

     
    LETTER-Sequence

      Vol:
    E101-A No:12
      Page(s):
    2217-2220

    In this letter, a generic method to construct mutually orthogonal binary zero correlation zone (ZCZ) sequence sets from mutually orthogonal complementary sequence sets (MOCSSs) with certain properties is presented at first. Then MOCSSs satisfying conditions are generated from binary orthogonal matrices with order N×N, where N=p-1, p is a prime. As a result, mutually orthogonal binary ZCZ sequence sets with parameters (2N2,N,N+1)-ZCZ can be obtained, the number of ZCZ sets is N. Note that each single ZCZ sequence set is optimal with respect to the theoretical bound.

  • A Modulus Factorization Algorithm for Self-Orthogonal and Self-Dual Integer Codes

    Hajime MATSUI  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:11
      Page(s):
    1952-1956

    Integer codes are defined by error-correcting codes over integers modulo a fixed positive integer. In this paper, we show that the construction of integer codes can be reduced into the cases of prime-power moduli. We can efficiently search integer codes with small prime-power moduli and can construct target integer codes with a large composite-number modulus. Moreover, we also show that this prime-factorization reduction is useful for the construction of self-orthogonal and self-dual integer codes, i.e., these properties in the prime-power moduli are preserved in the composite-number modulus. Numerical examples of integer codes and generator matrices demonstrate these facts and processes.

  • Pilot Cluster ICI Suppression in OFDM Systems Based on Coded Symbols

    Yong DING  Shan OUYANG  Yue-Lei XIE  Xiao-Mao CHEN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/04/27
      Vol:
    E101-B No:11
      Page(s):
    2320-2330

    When trying to estimate time-varying multipath channels by applying a basis expansion model (BEM) in orthogonal frequency division multiplexing (OFDM) systems, pilot clusters are contaminated by inter-carrier interference (ICI). The pilot cluster ICI (PC-ICI) degrades the estimation accuracy of BEM coefficients, which degrades system performance. In this paper, a PC-ICI suppression scheme is proposed, in which two coded symbols defined as weighted sums of data symbols are inserted on both sides of each pilot cluster. Under the assumption that the channel has Flat Doppler spectrum, the optimized weight coefficients are obtained by an alternating iterative optimization algorithm, so that the sum of the PC-ICI generated by the encoded symbols and the data symbols is minimized. By approximating the optimized weight coefficients, they are independent of the channel tap power. Furthermore, it is verified that the proposed scheme is robust to the estimation error of the normalized Doppler frequency offset and can be applied to channels with other types of Doppler spectra. Numerical simulation results show that, compared with the conventional schemes, the proposed scheme achieves significant improvements in the performance of PC-ICI suppression, channel estimation and system bit-error-ratio (BER).

  • A Low-Complexity Path Delay Searching Method in Sparse Channel Estimation for OFDM Systems

    Kee-Hoon KIM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/05/11
      Vol:
    E101-B No:11
      Page(s):
    2297-2303

    By exploiting the inherent sparsity of wireless channels, the channel estimation in an orthogonal frequency division multiplexing (OFDM) system can be cast as a compressed sensing (CS) problem to estimate the channel more accurately. Practically, matching pursuit algorithms such as orthogonal matching pursuit (OMP) are used, where path delays of the channel is guessed based on correlation values for every quantized delay with residual. This full search approach requires a predefined grid of delays with high resolution, which induces the high computational complexity because correlation values with residual at a huge number of grid points should be calculated. Meanwhile, the correlation values with high resolution can be obtained by interpolation between the correlation values at a low resolution grid. Also, the interpolation can be implemented with a low pass filter (LPF). By using this fact, in this paper we substantially reduce the computational complexity to calculate the correlation values in channel estimation using CS.

  • A New Discrete Gaussian Sampler over Orthogonal Lattices

    Dianyan XIAO  Yang YU  Jingguo BI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:11
      Page(s):
    1880-1887

    Discrete Gaussian is a cornerstone of many lattice-based cryptographic constructions. Aiming at the orthogonal lattice of a vector, we propose a discrete Gaussian rejection sampling algorithm, by modifying the dynamic programming process for subset sum problems. Within O(nq2) time, our algorithm generates a distribution statistically indistinguishable from discrete Gaussian at width s>ω(log n). Moreover, we apply our sampling algorithm to general high-dimensional dense lattices, and orthogonal lattices of matrices $matAinZ_q^{O(1) imes n}$. Compared with previous polynomial-time discrete Gaussian samplers, our algorithm does not rely on the short basis.

  • Optimal Mutually Orthogonal ZCZ Polyphase Sequence Sets

    Fanxin ZENG  Xiping HE  Guixin XUAN  Wenchao ZHANG  Guojun LI  Zhenyu ZHANG  Yanni PENG  Sheng LU  Li YAN  

     
    LETTER-Information Theory

      Vol:
    E101-A No:10
      Page(s):
    1713-1718

    In an approximately synchronized (AS) code-division multiple-access (CDMA) communication system, zero correlation zone (ZCZ) sequences can be used as its spreading sequences so that the system suppresses multiple access interference (MAI) and multi-path interference (MPI) fully and synchronously. In this letter, the mutually orthogonal (MO) ZCZ polyphase sequence sets proposed by one of the authors are improved, and the resultant ZCZ sequences in each set arrive at the theoretical bound regarding ZCZ sequences under some conditions. Therefore, the improved MO ZCZ sequence sets are optimal.

  • Design and Analysis of First-Order Steerable Nonorthogonal Differential Microphone Arrays

    Qiang YU  Xiaoguang WU  Yaping BAO  

     
    LETTER-Engineering Acoustics

      Vol:
    E101-A No:10
      Page(s):
    1687-1692

    Differential microphone arrays have been widely used in hands-free communication systems because of their frequency-invariant beampatterns, high directivity factors and small apertures. Considering the position of acoustic source always moving within a certain range in real application, this letter proposes an approach to construct the steerable first-order differential beampattern by using four omnidirectional microphones arranged in a non-orthogonal circular geometry. The theoretical analysis and simulation results show beampattern constructed via this method achieves the same direction factor (DF) as traditional DMAs and higher white noise gain (WNG) within a certain angular range. The simulation results also show the proposed method applies to processing speech signal. In experiments, we show the effectiveness and small computation amount of the proposed method.

  • Energy Efficient Resource Allocation for Downlink Cooperative Non-Orthogonal Multiple Access Systems

    Zi-fu FAN  Qu CHENG  Zheng-qiang WANG  Xian-hui MENG  Xiao-yu WAN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:9
      Page(s):
    1603-1607

    In this letter, we study the resource allocation for the downlink cooperative non-orthogonal multiple access (NOMA) systems based on the amplifying-and-forward protocol relay transmission. A joint power allocation and amplification gain selection scheme are proposed. Fractional programming and the iterative algorithm based on the Lagrangian multiplier are used to allocate the transmit power to maximize the energy efficiency (EE) of the systems. Simulation results show that the proposed scheme can achieve higher energy efficiency compared with the minimum power transmission (MPT-NOMA) scheme and the conventional OMA scheme.

  • Modified Generalized Sidelobe Canceller for Nonuniform Linear Array Radar Space-Time Adaptive Processing

    Xiang ZHAO  Zishu HE  Yikai WANG  Yuan JIANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:9
      Page(s):
    1585-1587

    This letter addresses the problem of space-time adaptive processing (STAP) for airborne nonuniform linear array (NLA) radar using a generalized sidelobe canceller (GSC). Due to the difficulty of determining the spatial nulls for the NLAs, it is a problem to obtain a valid blocking matrix (BM) of the GSC directly. In order to solve this problem and improve the STAP performance, a BM modification method based on the modified Gram-Schmidt orthogonalization algorithm is proposed. The modified GSC processor can achieve the optimal STAP performance and as well a faster convergence rate than the orthogonal subspace projection method. Numerical simulations validate the effectiveness of the proposed methods.

  • Improving Spectral Efficiency of Non-Orthogonal Space Time Block Coded-Continuous Phase Modulation

    Kazuyuki MORIOKA  Satoshi YAMAZAKI  David ASANO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/03/14
      Vol:
    E101-B No:9
      Page(s):
    2024-2032

    We consider space time block coded-continuous phase modulation (STBC-CPM), which has the advantages of both STBC and CPM at the same time. A weak point of STBC-CPM is that the normalized spectral efficiency (NSE) is limited by the orthogonality of the STBC and CPM parameters. The purpose of this study is to improve the NSE of STBC-CPM. The NSE depends on the transmission rate (TR), the bit error rate (BER) and the occupied bandwidth (OBW). First, to improve the TR, we adapt quasi orthogonal-STBC (QO-STBC) for four transmit antennas and quasi-group orthogonal Toeplitz code (Q-GOTC) for eight transmit antennas, at the expense of the orthogonality. Second, to evaluate the BER, we derive a BER approximation of STBC-CPM with non-orthogonal STBC (NO-STBC). The theoretical analysis and simulation results show that the NSE can be improved by using QO-STBC and Q-GOTC. Third, the OBW depends on CPM parameters, therefore, the tradeoff between the NSE and the CPM parameters is considered. A computer simulation provides a candidate set of CPM parameters which have better NSE. Finally, the adaptation of non-orthogonal STBC to STBC-CPM can be viewed as a generalization of the study by Silvester et al., because orthogonal STBC can be thought of as a special case of non-orthogonal STBC. Also, the adaptation of Q-GOTC to CPM can be viewed as a generalization of our previous letter, because linear modulation scheme can be thought of as a special case of non-linear modulation.

  • Construction of Asymmetric Orthogonal Arrays of Strength t from Orthogonal Partition of Small Orthogonal Arrays

    Shanqi PANG  Xiao LIN  Jing WANG  

     
    LETTER-Information Theory

      Vol:
    E101-A No:8
      Page(s):
    1267-1272

    In this study, we developed a new orthogonal partition concept for asymmetric orthogonal arrays and used it for the construction of orthogonal arrays for the first time. Permutation matrices and the Kronecker product were also successfully and skillfully used as our main tools. Hence, a new general iterative construction method for asymmetric orthogonal arrays of high strength was developed, and some new infinite families of orthogonal arrays of strength 3 and several new orthogonal arrays of strength 4, 5, and 6 were obtained.

61-80hit(476hit)