The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] pipelined ADC(9hit)

1-9hit
  • A Brief History of Nyquist Analog-to-Digital Converters Open Access

    Akira MATSUZAWA  

     
    INVITED PAPER

      Pubricized:
    2023/04/21
      Vol:
    E106-C No:10
      Page(s):
    493-505

    This paper reviews and discusses a brief history of Nyquist ADCs. Bipolar flash ADCs for early development stage of HDTV and digital oscilloscopes, a Bi-CMOS two-step flash ADC using resistive interpolation for home HDTV receivers, a CMOS two-step flash ADC using capacitive interpolation for handy camcorders, pipelined ADCs using CMOS operational amplifiers, CMOS flash ADCs using dynamic comparator and digital offset compensation, SAR ADCs using low noise dynamic comparators and MOM capacitors, and hybrid ADCs are reviewed.

  • Reference-Free Deterministic Calibration of Pipelined ADC

    Takashi OSHIMA  Taizo YAMAWAKI  

     
    PAPER-Analog Signal Processing

      Vol:
    E98-A No:2
      Page(s):
    665-675

    Novel deterministic digital calibration of pipelined ADC has been proposed and analyzed theoretically. Each MDAC is dithered exploiting its inherent redundancy during the calibration. The dither enables fast accurate convergence of calibration without requiring any accurate reference signal and hence with minimum area and power overhead. The proposed calibration can be applied to both the 1.5-bit/stage MDAC and the multi-bit/stage MDAC. Due to its simple structure and algorithm, it can be modified to the background calibration easily. The effectiveness of the proposed calibration has been confirmed by both the extensive simulations and the measurement of the prototype 0.13-µm-CMOS 50-MS/s pipelined ADC using the op-amps with only 37-dB gain. As expected, SNDR and SFDR have improved from 35.5dB to 58.1dB and from 37.4dB to 70.4dB, respectively by the proposed calibration.

  • Background Self-Calibration Algorithm for Pipelined ADC Using Split ADC Scheme

    Takuya YAGI  Kunihiko USUI  Tatsuji MATSUURA  Satoshi UEMORI  Satoshi ITO  Yohei TAN  Haruo KOBAYASHI  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E94-C No:7
      Page(s):
    1233-1236

    This brief paper describes a background calibration algorithm for a pipelined ADC with an open-loop amplifier using a Split ADC structure. The open-loop amplifier is employed as a residue amplifier in the first stage of the pipelined ADC to realize low power and high speed. However the residue amplifier as well as the DAC suffer from gain error and non-linearity, and hence they need calibration; conventional background calibration methods take a long time to converge. We investigated the split ADC structure for its background calibration with fast convergence, and validated its effectiveness by MATLAB simulation.

  • Duty Cycle Corrector for Pipelined ADC with Low Added Jitter

    Zhengchang DU  Jianhui WU  Shanli LONG  Meng ZHANG  Xincun JI  

     
    LETTER

      Vol:
    E92-C No:6
      Page(s):
    864-866

    A wide range, low jitter Duty Cycle Corrector (DCC) based on continuous-time integrator is proposed. It introduces little added jitter in the sampling edge, which make it good candidate for pipelined ADC application. The circuit is implemented in CMOS 0.35 µm 2P4M Mixed Signal process. The experimental results show the circuit can work for a wide frequency range from 500 kHz to 280 MHz, with a correction error within 50%1% under 200 MHz, and the acceptable duty cycle can be as wide as 1-99% for low frequency inputs.

  • A Reference Voltage Buffer with Settling Boost Technique for a 12 bit 18 MHz Multibit/Stage Pipelined A/D Converter

    Shunsuke OKURA  Tetsuro OKURA  Toru IDO  Kenji TANIGUCHI  

     
    PAPER

      Vol:
    E92-A No:2
      Page(s):
    367-373

    A reference voltage buffer for a multibit/stage pipelined ADC is described, where a settling boost technique is used to improve the settling response of the pipelined stages. A 12 bit 18 MHz pipelined ADC with the buffer is designed and simulated based on a 0.35 µm CMOS process. According to simulation results, the power consumed by the reference voltage buffer is reduced by 33% compared to that without the settling boost technique.

  • Low-Power Circuit Techniques for Low-Voltage Pipelined ADCs Based on Switched-Opamp Architecture

    Hsin-Hung OU  Soon-Jyh CHANG  Bin-Da LIU  

     
    PAPER

      Vol:
    E91-A No:2
      Page(s):
    461-468

    This paper proposes useful circuit structures for achieving a low-voltage/low-power pipelined ADC based on switched-opamp architecture. First, a novel unity-feedback-factor sample-and-hold which manipulates the features of switched-opamp technique is presented. Second, opamp-sharing is merged into switched-opamp structure with a proposed dual-output opamp configuration. A 0.8-V, 9-bit, 10-Msample/s pipelined ADC is designed to verify the proposed circuit. Simulation results using a 0.18-µm CMOS 1P6M process demonstrate the figure-of-merit of this pipelined ADC is only 0.71 pJ/step.

  • A Digitally Assisted Gain and Offset Error Cancellation Technique for a CMOS Pipelined ADC with a 1.5-bit Bit-Block Architecture

    Hiroki SAKURAI  Shigeto TANAKA  Yasuhiro SUGIMOTO  

     
    PAPER-Analog Signal Processing

      Vol:
    E90-A No:10
      Page(s):
    2272-2279

    This paper proposes a very simple method of eliminating the gain and offset errors caused by mismatches of elements, such as capacitors, for a high-speed CMOS pipelined ADC with a 1.5-bit architecture. The gain and offset errors in a bit-block due to capacitor mismatch are analog-to-digital (A-D) converted without correcting errors, but by exchanging capacitors at every clock. The obtained results are digital codes at the output of the ADC, and they contain positive and negative errors in turn. The two consecutive codes are then added in digital form, thus canceling the errors. This results in the two-fold oversampling operation. As the distortion component arises when the input signal frequency increases, a front-end SHA is used to completely eliminate distortion up to the Nyquist frequency. The behavioral simulation of a 14-bit ADC reveals that this CMOS pipelined ADC with a 1.5-bit bit-block architecture, even without a front-end SHA, has more than 70 dB of spurious-free dynamic range (SFDR) for up to an 8 MHz input signal when each of the upper three bit-blocks has gain and offset errors of +0.8% when the clock frequency is 102.4 MHz. Using an SHA in front further improves the SFDR to 95 dB up to the signal frequency bandwidth of 25.6 MHz.

  • A Study to Realize a CMOS Pipelined Current-Mode A-to-D Converter for Video Applications

    Yasuhiro SUGIMOTO  Yuji GOHDA  Shigeto TANAKA  

     
    LETTER

      Vol:
    E89-C No:6
      Page(s):
    811-813

    The possibility of realizing a CMOS pipelined current-mode A-D converter (ADC) for video applications has been examined. Two times the input current is obtained at the output of a bit-block of a pipelined ADC by subtracting the negative output current from the positive output current in the pseudo-differential configuration. Subtraction of the sub-DAC (D-to-A converter) current from the two times the input current is performed by controlling of the current comparator, which compares the positive and the negative input currents. A prototype chip has been implemented using 0.35 µm CMOS devices. It operates in 28 MS/s, and showed a 42 dB signal-to-noise ratio from the 2 V supply voltage.

  • A Digital Calibration Technique of Capacitor Mismatch for Pipelined Analog-to-Digital Converters

    Masanori FURUTA  Shoji KAWAHITO  Daisuke MIYAZAKI  

     
    PAPER

      Vol:
    E85-C No:8
      Page(s):
    1562-1568

    A digital calibration technique, which corrects errors due to capacitor mismatch in pipelined ADC and directly measures the error coefficients using the ADC INL plot, is described. The proposed technique can be applied for various types of pipelined ADC architectures. Test results using an implemented 10-bit pipelined ADC show that the ADC achieves a peak signal-to-noise-and-distortion ratio of 56.5 dB, a peak integral non-linearity of 0.3 LSB, and a peak differential non-linearity of 0.3 LSB using the digital calibration.