Yuki ATSUMI Tomoya YOSHIDA Ryosuke MATSUMOTO Ryotaro KONOIKE Youichi SAKAKIBARA Takashi INOUE Keijiro SUZUKI
Indoor free space optical (FSO) communication technology that provides high-speed connectivity to edge users is expected to be introduced in the near future mobile communication system, where the silicon photonics solid-state beam scanning device is a promising tool because of its low cost, long-term reliability, and other beneficial properties. However, the current two-dimensional beam scanning devices using grating coupler arrays have difficulty in increasing the transmission capacity because of bandwidth regulation. To solve the problem, we have introduced a broadband surface optical coupler, “elephant coupler,” which has great potential for combining wavelength and spatial division multiplexing technologies into the beam scanning device, as an alternative to grating couplers. The prototype port-selective silicon beam scanning device fabricated using a 300 mm CMOS pilot line achieved broadband optical beam emission with a 1 dB-loss bandwidth of 40 nm and demonstrated beam scanning using an imaging lens. The device has also exhibited free-space signal transmission of non-return-to-zero on-off-keying signals at 10 Gbps over a wide wavelength range of 60 nm. In this paper, we present an overview of the developed beam scanning device. Furthermore, the theoretical design guidelines for indoor mobile FSO communication are discussed.
Fengchuan XU Qiaoyue LI Guilu ZHANG Yasheng CHANG Zixuan ZHENG
This letter presents a global feature-based method for evaluating the no reference quality of scanning electron microscopy (SEM) contrast-distorted images. Based on the characteristics of SEM images and the human visual system, the global features of SEM images are extracted as the score for evaluating image quality. In this letter, the texture information of SEM images is first extracted using a low-pass filter with orientation, and the amount of information in the texture part is calculated based on the entropy reflecting the complexity of the texture. The singular values with four scales of the original image are then calculated, and the amount of structural change between different scales is calculated and averaged. Finally, the amounts of texture information and structural change are pooled to generate the final quality score of the SEM image. Experimental results show that the method can effectively evaluate the quality of SEM contrast-distorted images.
Jean TEMGA Koki EDAMATSU Tomoyuki FURUICHI Mizuki MOTOYOSHI Takashi SHIBA Noriharu SUEMATSU
In this article, a new Beamforming Network (BFN) realized in Broadside Coupled Stripline (BCS) is proposed to feed 1×4 and 2×2 arrays antenna at 28 GHZ-Band. The new BFN is composed only of couplers and phase shifters. It doesn't require any crossover compared to the conventional Butler Matrix (BM) which requires two crossovers. The tight coupling and low loss characteristics of the BCS allow a design of a compact and wideband BFN. The new BFN produces the phase differences of (±90°) and (±45°, ±135°) respectively in x- and y-directions. Its integration with a 1×4 linear array antenna reduces the array area by 70% with an improvement of the gain performance compared with the conventional array. The integration with a 2×2 array allows the realization of a full 2-D beam scanning. The proposed concept has been verified experimentally by measuring the fabricated prototypes of the BFN, the 1-D and 2-D patch arrays antennas. The measured 11.5 dBi and 11.3 dBi maximum gains are realized in θ0 = 14° and (θ0, φ0) = (45°,345°) directions respectively for the 1-D and 2-D patch arrays. The physical area of the fabricated BFN is only (0.37λ0×0.3λ0×0.08λ0), while the 1-D array and 2-D array antennas areas without feeding transmission lines are respectively (0.5λ0×2.15λ0×0.08λ0) and (0.9λ0×0.8λ0×0.08λ0).
Jean TEMGA Tomoyuki FURUICHI Takashi SHIBA Noriharu SUEMATSU
A 2-D beam scanning array antenna fed by a compact 16-way 2-D beamforming network (BFN) designed in Broadside Coupled Stripline (BCS) is addressed. The proposed 16-way 2-D BFN is formed by interconnecting two groups of 4x4 Butler Matrix (BM). Each group is composed of four compact 4x4 BMs. The critical point of the design is to propose a simple and compact 4x4 BM without crossover in BCS to achieve a better transmission coefficient of the 16-way 2-D BFN with reduced size of merely 0.8λ0×0.8λ0×0.04λ0. Moreover, the complexity of the interface connection between the 2-D BFN and the 4x4 patch array antenna is reduced by using probe feeding. The 16-way 2-D BFN is able to produce the phase shift of ±45°, and ±135° in x- and y- directions. The 2-D BFN is easily integrated under the 4x4 patch array to form a 2-D phased array capable of switching 16 beams in both elevation and azimuth directions. The area of the proposed 2-D beam scanning array antenna module has been significantly reduced to 2λ0×2λ0×0.04λ0. A prototype operating in the frequency range of 4-6GHz is fabricated and measured to validate the concept. The measurement results agree well with the simulations.
In this paper, we propose a scheme to strengthen network-based moving target defense with disposable identifiers. The main idea is to change disposable identifiers for each packet to maximize unpredictability with large hopping space and substantially high hopping frequency. It allows network-based moving target defense to defeat active scanning, passive scanning, and passive host profiling attacks. Experimental results show that the proposed scheme changes disposable identifiers for each packet while requiring low overhead.
Minseok KIM Tatsuki IWATA Shigenobu SASAKI Jun-ichi TAKADA
In radio channel measurements and modeling, directional scanning via highly directive antennas is the most popular method to obtain angular channel characteristics to develop and evaluate advanced wireless systems for high frequency band use. However, it is often insufficient for ray-/cluster-level characterizations because the angular resolution of the measured data is limited by the angular sampling interval over a given scanning angle range and antenna half power beamwidth. This study proposes the sub-grid CLEAN algorithm, a novel technique for high-resolution multipath component (MPC) extraction from the multi-dimensional power image, so called double-directional angular delay power spectrum. This technique can successfully extract the MPCs by using the multi-dimensional power image. Simulation and measurements showed that the proposed technique could extract MPCs for ray-/cluster-level characterizations and channel modeling. Further, applying the proposed method to the data captured at 58.5GHz in an atrium entrance hall environment which is an indoor hotspot access scenario in the fifth generation mobile system, the multipath clusters and corresponding scattering processes were identified.
This paper proposes an enhanced BLE scanner with user-level channel awareness and simultaneous channel scanning to increase theoretical scanning capability by up to three times. With better scanning capability, channel analysis quality also has been improved by considering channel-specific signal characteristics, without the need of beacon-side changes.
This paper presents a meta-structured circular polarized array antenna with wide scan angle. In order to widen the scanning angle of array antennas, this paper investigates unit antenna beamwidth and the coupling effects between array elements, both of which directly affect the steering performance. As a result, the optimal array distance, the mode configuration, and the antenna structure are elucidated. By using the features of the miniaturized mu-zero resonance (MZR) antenna, it is possible to design the antenna at optimum array distance for wide beamwidth. In addition, by modifying via position and gap configuration of the antenna, it is possible to optimize the mode configuration for optimal isolation. Finally, the 3dB steerable angle of 66° is successfully demonstrated using a 1x8 MZR CP antenna array without any additional decoupling structure. The measured beam patterns at a scan angle of 0°, 22°, 44°, and 66°agree well with the simulated beam patterns.
Miki HASEYAMA Takahiro OGAWA Sho TAKAHASHI Shuhei NOMURA Masatsugu SHIMOMURA
Biomimetics is a new research field that creates innovation through the collaboration of different existing research fields. However, the collaboration, i.e., the exchange of deep knowledge between different research fields, is difficult for several reasons such as differences in technical terms used in different fields. In order to overcome this problem, we have developed a new retrieval platform, “Biomimetics image retrieval platform,” using a visualization-based image retrieval technique. A biological database contains a large volume of image data, and by taking advantage of these image data, we are able to overcome limitations of text-only information retrieval. By realizing such a retrieval platform that does not depend on technical terms, individual biological databases of various species can be integrated. This will allow not only the use of data for the study of various species by researchers in different biological fields but also access for a wide range of researchers in fields ranging from materials science, mechanical engineering and manufacturing. Therefore, our platform provides a new path bridging different fields and will contribute to the development of biomimetics since it can overcome the limitation of the traditional retrieval platform.
Takahiro OGAWA Akihiro TAKAHASHI Miki HASEYAMA
In this paper, an insect classification method using scanning electron microphotographs is presented. Images taken by a scanning electron microscope (SEM) have a unique problem for classification in that visual features differ from each other by magnifications. Therefore, direct use of conventional methods results in inaccurate classification results. In order to successfully classify these images, the proposed method generates an optimal training dataset for constructing a classifier for each magnification. Then our method classifies images using the classifiers constructed by the optimal training dataset. In addition, several images are generally taken by an SEM with different magnifications from the same insect. Therefore, more accurate classification can be expected by integrating the results from the same insect based on Dempster-Shafer evidence theory. In this way, accurate insect classification can be realized by our method. At the end of this paper, we show experimental results to confirm the effectiveness of the proposed method.
Michio TAKIKAWA Yoshio INASAWA Hiroaki MIYASHITA Izuru NAITO
We investigate a phased array-fed dual reflector antenna applying one-dimensional beam-scanning of the center-fed type, using an elliptical aperture to provide wide area observation. The distinguishing feature of this antenna is its elliptical aperture shape, in which the aperture diameter differs between the forward satellite direction and the cross-section orthogonal to it. The shape in the plane of the forward satellite direction, which does not have a beam-scanning function, is a ring-focus Cassegrain antenna, and the shape in the plane orthogonal to that, which does have a beam-scanning function, is an imaging reflector antenna. This paper describes issues which arose during design of the elliptical aperture shape and how they were solved, and presents design results using elliptical aperture dimensions of 1600 mm × 600 mm, in which the beam width differs by more than two times in the orthogonal cross-section. The effectiveness of the antenna was verified by fabricating a prototype antenna based on the design results. Measurement results confirmed that an aperture efficiency of 50% or more could be achieved, and that a different beam width was obtained in the orthogonal plane in accordance with design values.
Masayuki HIRAO Daichi YAMANAKA Takanori YAZAKI Jun OSAKO Hokuto IIJIMA Takao SHIOKAWA Hikota AKIMOTO Takashi MEGURO
Negative electron affinity (NEA) surfaces can be formed by alternating supply of alkali metals (e.g. Cs, Rb, K) and oxygen on semiconductor surfaces. We have studied adsorption structures of Cs on an As-terminated (2×4) (001) GaAs surface using scanning tunneling microscopy (STM). We found that the initial adsorption of Cs atoms occurs around the step sites in the form of Cs clusters and that the size of clusters is reduced by successive exposure to O2, indicating that As-terminated (2×4) surfaces are relatively stable compared to Ga-terminated surfaces and are not broken by the Cs clusters adsorption.
Michio TAKIKAWA Yoshio INASAWA Hiroaki MIYASHITA Izuru NAITO
We propose a novel phased array-fed dual-reflector antenna that reduces performance degradation caused by multiple reflection. The marked feature of the proposed configuration is that different reflector profiles are employed for the two orthogonal directions. The reflector profile in the beam-scanning section (vertical section) is set to an imaging reflector configuration, while the profile in the orthogonal non-beam-scanning section (horizontal section) is set to a ring-focus Cassegrain antenna configuration. In order to compare the proposed antenna with the conventional antenna in which multiple reflection was problematic, we designed a prototype antenna of the same size, and verified the validity of the proposed antenna. The results of the verification were that the gain in the designed central frequency increased by 0.4 dB, and the ripple of the gain frequency properties that was produced by multiple reflection was decreased by 1.1,dB. These results demonstrated the validity of the proposed antenna.
MyungKeun YOON JinWoo SON Seon-Ho SHIN
We propose a new Bloom filter that efficiently filters out non-members. With extra bits assigned and asymmetrically distributed, the new filter reduces hash computations and memory accesses. For an error rate of 10-6, the new filter reduces cost by 31.31% with 4.33% additional space, while the standard method saves offers a 20.42% reduction.
Gwanggil JEON Young-Sup LEE SeokHoon KANG
An effective interlaced-to-progressive scanning format conversion method is presented for the interpolation of interlaced images. On the basis of the weight assignment algorithm, the proposed method is composed of three stages: (1) straightforward interpolation with pre-determined six-tap filter, (2) fuzzy metric-based weight assignment, (3) updating the interpolation results. We first deinterlace the missing line with six-tap filter in the working window. Then we compute the local weight among the adjacent pixels with a fuzzy metric. Finally we deinterlace the missing pixels using the proposed interpolator. Comprehensive simulations conducted on different images and video sequences have proved the effectiveness of the proposed method, with significant improvement over conventional methods.
Michio TAKIKAWA Izuru NAITO Kei SUWA Yoshio INASAWA Yoshihiko KONISHI
We propose a new, compact, center-fed reflector antenna that is capable of one-dimensional electronic beam scanning. The reflector profile in the vertical section (beam-scanning) is set to an imaging reflector configuration, while the profile in the orthogonal horizontal section (non-beam-scanning) is set to a Cassegrain antenna configuration. The primary radiator is a one-dimensional phased array antenna. We choose a center-fed configuration in order to reduce the antenna size as much as possible, despite the fact that the increased blocking area from the primary radiator causes degradation in efficiency compared to the typical offset-type configuration. In the proposed configuration, beam scanning is limited to one dimension, but utilize a compact, center-fed configuration that maintains the features of an imaging reflector antenna. We present the antenna configuration and design method and show that results obtained from the prototype antenna verify the predicted performance.
Deshan CHEN Atsushi MIYAMOTO Shun'ichi KANEKO
This paper describes a robust three-dimensional (3D) surface reconstruction method that can automatically eliminate shadowing errors. For modeling shadowing effect, a new shadowing compensation model based on the angle distribution of backscattered electrons is introduced. Further, it is modified with respect to some practical factors. Moreover, the proposed iterative shadowing compensation method, which performs commutatively between the compensation of image intensities and the modification of the corresponding 3D surface, can effectively provide both an accurate 3D surface and compensated shadowless images after convergence.
Hiroki NAKAHARA Tsutomu SASAO Munehiro MATSUURA
This paper shows a virus scanning engine using two-stage matching. In the first stage, a binary CAM emulator quickly detects a part of the virus pattern, while in the second stage, the MPU detects the full length of the virus pattern. The binary CAM emulator is realized by an index generation unit (IGU) based on row-shift decomposition. The proposed system uses two off-chip SRAMs and a small FPGA. Thus, the cost and the power consumption are lower than the TCAM-based system. The system loaded 1,290,617 ClamAV virus patterns. As for the area and throughput, this system outperforms existing two-stage matching systems using FPGAs.
Seok-Min CHAE In-Ho SONG Sung-Hak LEE Kyu-Ik SOHNG
In this study, we show that the motion blur is caused by exposure time of video camera as well as the characteristics of LCD system. Also, we suggest that evaluation method of motion picture quality according to the frequency response of video camera and LCD systems of hold and scanning backlight type.
Jose L. LOPEZ-MARTINEZ Vitaly KOBER
This paper presents a restoration method using several degraded observed images obtained through a technique known as microscanning. It is shown that microscanning provides sufficient spatial information for image restoration with minimal information about the original image and without knowing the interference function that causes degradation.