The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] sign(2667hit)

841-860hit(2667hit)

  • Greedy Optimization Algorithm for the Power/Ground Network Design to Satisfy the Voltage Drop Constraint

    Mikiko SODE TANAKA  Nozomu TOGAWA  Masao YANAGISAWA  Satoshi GOTO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:4
      Page(s):
    1082-1090

    With the process technological progress in recent years, low voltage power supplies have become quite predominant. With this, the voltage margin has decreased and therefore the power/ground design that satisfies the voltage drop constraint becomes more important. In addition, the reduction of the power/ground total wiring area and the number of layers will reduce manufacturing and designing costs. So, we propose an algorithm that satisfies the voltage drop constraint and at the same time, minimizes the power/ground total wiring area. The proposed algorithm uses the idea of a network algorithm [1] where the edge which has the most influence on voltage drop is found. Voltage drop is improved by changing the resistance of the edge. The proposed algorithm is efficient and effectively updates the edge with the greatest influence on the voltage drop. From experimental results, compared with the conventional algorithm, we confirmed that the total wiring area of the power/ground was reducible by about 1/3. Also, the experimental data shows that the proposed algorithm satisfies the voltage drop constraint in the data whereas the conventional algorithm cannot.

  • A Simple and Speedy Routing with Reduced Resource Information in Large-Capacity Optical WDM Networks

    Yusuke HIROTA  Hideki TODE  Koso MURAKAMI  

     
    PAPER

      Vol:
    E94-B No:4
      Page(s):
    884-893

    This paper discusses a simple and speedy routing method in large-capacity optical Wavelength Division Multiplexing (WDM) networks. The large-capacity WDM network is necessary to accommodate increasing traffic load in future. In this large-capacity WDM network, each link has many fibers and a huge amount of optical data can be transmitted through these fibers simultaneously. Optical path is configured for transmitting optical data by wavelength reservation including routing and wavelength assignment (RWA). Since traditional RWA methods have to treat much information about available wavelengths in each fiber, it is difficult to resolve RWA problem on time. In other words, the electrical processing becomes the bottleneck in the large-capacity WDM network. Therefore, a simple and speedy RWA method is necessary for the large-capacity WDM network. In this paper, we propose the simple and effective RWA method which considers reduced information as Network Map. The objective is to improve the network performance by using multiple fibers effectively. The complex processing is not suitable for data transmission because the switching operation must be done in very short time for one request. In addition to this, it is not practical to collect detailed network information frequently. The proposed wavelength assignment method assigns wavelength more uniformly than traditional method, and therefore, the proposed routing method can select routes without considering detailed information about each wavelength state. The proposed routing method needs only local information and reduced network information. This paper shows that the proposed routing method can get suitable solution for large-capacity optical WDM networks through computer simulations. The proposed RWA method drastically improves the loss probability against other simple RWA methods. This paper also describes two types of optical switches with tunable or fixed wavelength conversions. The wavelength converters with relatively low technology becomes effective with the proposed RWA method in the large-capacity WDM network. This paper reveals that complex routing methods are not necessary for large-capacity optical WDM networks.

  • Extraction of Informative Genes from Multiple Microarray Data Integrated by Rank-Based Approach

    Dongwan HONG  Jeehee YOON  Jongkeun LEE  Sanghyun PARK  Jongil KIM  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E94-D No:4
      Page(s):
    841-854

    By converting the expression values of each sample into the corresponding rank values, the rank-based approach enables the direct integration of multiple microarray data produced by different laboratories and/or different techniques. In this study, we verify through statistical and experimental methods that informative genes can be extracted from multiple microarray data integrated by the rank-based approach (briefly, integrated rank-based microarray data). First, after showing that a nonparametric technique can be used effectively as a scoring metric for rank-based microarray data, we prove that the scoring results from integrated rank-based microarray data are statistically significant. Next, through experimental comparisons, we show that the informative genes from integrated rank-based microarray data are statistically more significant than those of single-microarray data. In addition, by comparing the lists of informative genes extracted from experimental data, we show that the rank-based data integration method extracts more significant genes than the z-score-based normalization technique or the rank products technique. Public cancer microarray data were used for our experiments and the marker genes list from the CGAP database was used to compare the extracted genes. The GO database and the GSEA method were also used to analyze the functionalities of the extracted genes.

  • A Dynamic Continuous Signature Monitoring Technique for Reliable Microprocessors

    Makoto SUGIHARA  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    477-486

    Reliability issues such as a soft error and NBTI (negative bias temperature instability) have become a matter of concern as integrated circuits continue to shrink. It is getting more and more important to take reliability requirements into account even for consumer products. This paper presents a dynamic continuous signature monitoring (DCSM) technique for high reliable computer systems. The DCSM technique dynamically generates reference signatures as well as runtime ones during executing a program. The DCSM technique stores the generated signatures in a signature table, which is a small storage circuit in a microprocessor, unlike the conventional static continuous signature monitoring techniques and contributes to saving program or data memory space that stores the signatures. Our experiments showed that our DCSM technique protected 1.4-100.0% of executed instructions depending on the size of signature tables.

  • Energy-Aware Task Scheduling for Real-Time Systems with Discrete Frequencies

    Dejun QIAN  Zhe ZHANG  Chen HU  Xincun JI  

     
    PAPER-Software System

      Vol:
    E94-D No:4
      Page(s):
    822-832

    Power-aware scheduling of periodic tasks in real-time systems has been extensively studied to save energy while still meeting the performance requirement. Many previous studies use the probability information of tasks' execution cycles to assist the scheduling. However, most of these approaches adopt heuristic algorithms to cope with realistic CPU models with discrete frequencies and cannot achieve the globally optimal solution. Sometimes they even show worse results than non-stochastic DVS schemes. This paper presents an optimal DVS scheme for frame-based real-time systems under realistic power models in which the processor provides only a limited number of speeds and no assumption is made on power/frequency relation. A suboptimal DVS scheme is also presented in this paper to work out a solution near enough to the optimal one with only polynomial time expense. Experiment results show that the proposed algorithm can save at most 40% more energy compared with previous ones.

  • Survey of Network Coding and Its Applications Open Access

    Takahiro MATSUDA  Taku NOGUCHI  Tetsuya TAKINE  

     
    INVITED SURVEY PAPER

      Vol:
    E94-B No:3
      Page(s):
    698-717

    This survey summarizes the state-of-the-art research on network coding, mainly focusing on its applications to computer networking. Network coding generalizes traditional store-and-forward routing techniques by allowing intermediate nodes in networks to encode several received packets into a single coded packet before forwarding. Network coding was proposed in 2000, and since then, it has been studied extensively in the field of computer networking. In this survey, we first summarize linear network coding and provide a taxonomy of network coding research, i.e., the network coding design problem and network coding applications. Moreover, the latter is subdivided into throughput/capacity enhancement, robustness enhancement, network tomography, and security. We then discuss the fundamental characteristics of network coding and diverse applications of network coding in details, following the above taxonomy.

  • Layout-Driven Skewed Clock Tree Synthesis for Superconducting SFQ Circuits

    Kazuyoshi TAKAGI  Yuki ITO  Shota TAKESHIMA  Masamitsu TANAKA  Naofumi TAKAGI  

     
    PAPER

      Vol:
    E94-C No:3
      Page(s):
    288-295

    In this paper, we propose a method for layout-driven skewed clock tree synthesis for SFQ logic circuits. For a given logic circuit without a clock tree, our algorithm outputs a circuit with a synthesized clock tree and timing adjustments achieving the given clock period and a rough placement of the clocked gates. In the proposed algorithm, clocked gates are grouped into levels and the clock tree is synthesized for each level. For each level, we estimate the clock timing for all possible placements of each gate, and then we search a placement of all gates that minimizes the total number of delay elements for timing adjustment. Once the placement is obtained, we synthesize a clock tree without wire intersections. We applied the proposed method to a moderate size circuit and confirmed that clock trees satisfying given timing requirements can be synthesized automatically.

  • A New Critical Area Simulation Algorithm and Its Application for Failing Bit Analysis

    Chizu MATSUMOTO  Yuichi HAMAMURA  Yoshiyuki TSUNODA  Hiroshi UOZAKI  Isao MIYAZAKI  Shiro KAMOHARA  Yoshiyuki KANEKO  Kenji KANAMITSU  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E94-C No:3
      Page(s):
    353-360

    In order to accelerate yield improvement in semiconductor manufacturing, it is important to prevent the root causes of product-specific failures, such as systematic defects and parametric defects, which are different for each product. We herein propose a method for the investigation of product-specific failures by estimating differences between the actual failing bit signatures (FBSs) and the predicted FBSs caused by random defects. In order to estimate these differences accurately, we have developed a novel algorithm by which to extract the critical area for each FBS. The total failure rate errors of FBSs are within 0.5% for embedded SRAMs. The proposed method identified the root causes of product-specific failures in 150 and 65 nm technology node products.

  • Continuous-Phase, Unmodulated Parallel-Combinatory High-Compaction Multicarrier Modulation

    Ryuji HAYASHI  Masanori HAMAMURA  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E94-B No:3
      Page(s):
    802-805

    A new type of modulation called continuous-phase parallel-combinatory high-compaction multicarrier modulation (CPPC/HC-MCM) is proposed. CPPC/HC-MCM employs the technique of continuous-phase modulation (CPM) and avoids the formation of amplitude gaps between two successive signals to enhance the spectral efficiency of conventional PC/HC-MCM. Results of simulations show that CPPC/HC-MCM is spectrally efficient and achieves a smaller bit error rate than conventional (unmodulated) PC/HC-MCM at a common spectral efficiency even if the peak-to-average power ratio is considered.

  • A DOA Estimation Approach under Nonuniform White Noise

    Jhih-Chung CHANG  Jui-Chung HUNG  Ann-Chen CHANG  

     
    LETTER-Antennas and Propagation

      Vol:
    E94-B No:3
      Page(s):
    831-833

    The letter deals with direction-of-arrival (DOA) estimation under nonuniform white noise and moderately small signal-to-noise ratios. The proposed approach first uses signal subspace projection for received data vectors, which form an efficient iterative quadratic maximum-likelihood (IQML) approach to achieve fast convergence and high resolution capabilities. In conjunction with a signal subspace selection technique, a more exact signal subspace can be obtained for reducing the nonuniform noise effect. The performance improvement achieved by applying the proposal to the classic IQML method is confirmed by computer simulations.

  • Optimized Median Lifting Scheme for Lossy Image Compression

    Do QUAN  Yo-Sung HO  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E94-D No:3
      Page(s):
    721-724

    In JPEG2000, the Cohen-Daubechies-Feauveau (CDF) 9/7-tap wavelet filter was implemented by using the conventional lifting scheme. However, the filter coefficients remain complex, and the conventional lifting scheme disregards image edges in the coding process. In order to solve these issues, we propose a lifting scheme in two steps. In the first step, we select the appropriate filter coefficients; in the second step, we employ a median operator to regard image edges. Experimental results show that the peak signal-to-noise ratio (PSNR) value of the proposed lifting scheme is significantly improved, by up to 0.75 dB on average, compared to that of the conventional lifting scheme in the CDF 9/7-tap wavelet filter of JPEG2000.

  • Design Optimization of High-Speed and Low-Power Operational Transconductance Amplifier Using gm/ID Lookup Table Methodology

    Takayuki KONISHI  Kenji INAZU  Jun Gyu LEE  Masanori NATSUI  Shoichi MASUI  Boris MURMANN  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:3
      Page(s):
    334-345

    We propose a design optimization flow for a high-speed and low-power operational transconductance amplifier (OTA) using a gm/ID lookup table design methodology in scaled CMOS. This methodology advantages from using gm/ID as a primary design parameter to consider all operation regions including strong, moderate, and weak inversion regions, and enables the lowest power design. SPICE-based lookup table approach is employed to optimize the operation region specified by the gm/ID with sufficient accuracy for short-channel transistors. The optimized design flow features 1) a proposal of the worst-case design scenario for specification and gm/ID lookup table generations from worst-case SPICE simulations, 2) an optimization procedure accomplished by the combination of analytical and simulation-based approaches in order to eliminate tweaking of circuit parameters, and 3) an additional use of gm/ID subplots to take second-order effects into account. A gain-boosted folded-cascode OTA for a switched capacitor circuit is adopted as a target topology to explore the effectiveness of the proposed design methodology for a circuit with complex topology. Analytical expressions of the gain-boosted folded-cascode OTA in terms of DC gain, frequency response and output noise are presented, and detailed optimization of gm/IDs as well as circuit parameters are illustrated. The optimization flow is verified for the application to a residue amplifier in a 10-bit 125 MS/s pipeline A/D converter implemented in a 0.18 µm CMOS technology. The optimized circuit satisfies the required specification for all corner simulations without additional tweaking of circuit parameters. We finally explore the possibility of applying this design methodology as a technology migration tool, and illustrate the failure analysis by comparing the differences in the gm/ID characteristics.

  • Low Complexity Filter Architecture for ATSC Terrestrial Broadcasting DTV Systems

    Yong-Kyu KIM  Chang-Seok CHOI  Hanho LEE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:3
      Page(s):
    937-945

    This paper presents a low complexity partially folded architecture of transposed FIR filter and cubic B-spline interpolator for ATSC terrestrial broadcasting systems. By using the multiplexer, the proposed FIR filter and interpolator can provide high clock frequency and low hardware complexity. A binary representation method was used for designing the high order FIR filter. Also, in order to compensate the truncation error of FIR filter outputs, a fixed-point range detection method was used. The proposed partially folded architecture was designed and implemented with 90-nm CMOS technology that had a supply voltage of 1.1 V. The implementation results show that the proposed architectures have 12% and 16% less hardware complexity than the other kinds of architecture. Also, both the filter and the interpolator operate at a clock frequency of 200 MHz and 385 MHz, respectively.

  • Blind Source Separation Using Dodecahedral Microphone Array under Reverberant Conditions

    Motoki OGASAWARA  Takanori NISHINO  Kazuya TAKEDA  

     
    PAPER-Engineering Acoustics

      Vol:
    E94-A No:3
      Page(s):
    897-906

    The separation and localization of sound source signals are important techniques for many applications, such as highly realistic communication and speech recognition systems. These systems are expected to work without such prior information as the number of sound sources and the environmental conditions. In this paper, we developed a dodecahedral microphone array and proposed a novel separation method with our developed device. This method refers to human sound localization cues and uses acoustical characteristics obtained by the shape of the dodecahedral microphone array. Moreover, this method includes an estimation method of the number of sound sources that can operate without prior information. The sound source separation performances were evaluated under simulated and actual reverberant conditions, and the results were compared with the conventional method. The experimental results showed that our separation performance outperformed the conventional method.

  • Real-Time Object Detection Using Adaptive Background Model and Margined Sign Correlation

    Ayaka YAMAMOTO  Yoshio IWAI  Hiroshi ISHIGURO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E94-D No:2
      Page(s):
    325-335

    Background subtraction is widely used in detecting moving objects; however, changing illumination conditions, color similarity, and real-time performance remain important problems. In this paper, we introduce a sequential method for adaptively estimating background components using Kalman filters, and a novel method for detecting objects using margined sign correlation (MSC). By applying MSC to our adaptive background model, the proposed system can perform object detection robustly and accurately. The proposed method is suitable for implementation on a graphics processing unit (GPU) and as such, the system realizes real-time performance efficiently. Experimental results demonstrate the performance of the proposed system.

  • A Design Procedure for CMOS Three-Stage NMC Amplifiers

    Mohammad YAVARI  

     
    PAPER

      Vol:
    E94-A No:2
      Page(s):
    639-645

    This paper presents a novel time-domain design procedure for fast-settling three-stage nested-Miller compensated (NMC) amplifiers. In the proposed design methodology, the amplifier is designed to settle within a definite time period with a given settling accuracy by optimizing both the power consumption and silicon die area. Detailed design equations are presented and the circuit level simulation results are provided to verify the usefulness of the proposed design procedure with respect to the previously reported design schemes.

  • The Precoder Design for Intrablock MMSE Equalization and Block Delay Detection with a Modified Oblique Projection Framework

    Chun-Hsien WU  

     
    LETTER-Digital Signal Processing

      Vol:
    E94-A No:2
      Page(s):
    829-832

    This letter presents a method to enable the precoder design for intrablock MMSE equalization with previously proposed oblique projection framework. The joint design of the linear transceiver with optimum block delay detection is built. Simulation results validate the proposed approach and show the superior BER performance of the optimized transceiver.

  • Sanitizable Signatures Reconsidered

    Dae Hyun YUM  Pil Joong LEE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E94-A No:2
      Page(s):
    717-724

    A sanitizable signature scheme allows a semi-trusted party, designated by a signer, to modify pre-determined parts of a signed message without interacting with the original signer. To date, many sanitizable signature schemes have been proposed based on various cryptographic techniques. However, previous works are usually built upon the paradigm of dividing a message into submessages and applying a cryptographic primitive to each submessage. This methodology entails the computation time (and often signature length) in linear proportion to the number of sanitizable submessages. We present a new approach to constructing sanitizable signatures with constant overhead for signing and verification, irrespective of the number of submessages, both in computational cost and in signature size.

  • Post-Routing Double-Via Insertion for X-Architecture Clock Tree Yield Improvement

    Chia-Chun TSAI  Chung-Chieh KUO  Trong-Yen LEE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:2
      Page(s):
    706-716

    As the VLSI manufacturing technology shrinks to 65 nm and below, reducing the yield loss induced by via failures is a critical issue in design for manufacturability (DFM). Semiconductor foundries highly recommend using the double-via insertion (DVI) method to improve yield and reliability of designs. This work applies the DVI method in the post-stage of an X-architecture clock routing for double-via insertion rate improvement. The proposed DVI-X algorithm constructs the bipartite graphs of the partitioned clock routing layout with single vias and redundant-via candidates (RVCs). Then, DVI-X applies the augmenting path approach associated with the construction of the maximal cliques to obtain the matching solution from the bipartite graphs. Experimental results on benchmarks show that DVI-X can achieve higher double-via insertion rate by 3% and less running time by 68% than existing works. Moreover, a skew tuning technique is further applied to achieve zero skew because the inserted double vias affect the clock skew.

  • A 2-GHz Gain Equalizer for Analog Signal Transmission Using Feedforward Compensation by a Low-Pass Filter

    Masayoshi TAKAHASHI  Keiichi YAMAMOTO  Norio CHUJO  Ritsurou ORIHASHI  

     
    PAPER

      Vol:
    E94-A No:2
      Page(s):
    611-616

    A 2 GHz gain equalizer for analog signal transmission using a novel gain compensation method is described in this paper. This method is based on feedforward compensation by a low-pass filter, which improves the gain-equalizing performance by subtracting low-pass filtered signals from the directly passed signal at the end of a transmission line. The advantage of the proposed method over the conventional one is that the gain is equalized with a smaller THD at higher frequencies by using a low-pass instead of a high-pass filter. In this circuit, the peak gain is adjustable from 0 to 2.4 dB and the frequency of the peak gain can be controlled up to 2 GHz by varying the value of an external capacitor. Also this circuit achieves THD with 5 dB better than the conventional circuits.

841-860hit(2667hit)