The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] sign(2667hit)

801-820hit(2667hit)

  • Distance Estimation by Sequential Rearrangement of Signal Strength in Wireless Sensor Networks

    Seung-Hwan JIN  Jae-Kark CHOI  Nan HAO  Sang-Jo YOO  

     
    LETTER-Network

      Vol:
    E94-B No:9
      Page(s):
    2634-2637

    In the received signal strength-based ranging algorithms, distance is estimated from a path loss model, in which the path loss exponent is considered a key parameter. The conventional RSS-based algorithms generally assume that the path loss exponent is known a priori. However, this assumption is not acceptable in the real world because the channel condition depends on the current wireless environment. In this paper, we propose an accurate estimation method of the path loss exponent that results in minimizing distance estimation errors in varying environments. Each anchor node estimates the path loss exponent for its transmission coverage by the sequential rearrangement of the received signal strengths of all sensor nodes within its coverage. Simulation results show that the proposed method can accurately estimate the actual path loss exponent without any prior knowledge and provides low distance estimation error.

  • Performance Evaluation of Wireless Communications for Capsule Endoscopy

    Kenichi TAKIZAWA  Takahiro AOYAGI  Kiyoshi HAMAGUCHI  

     
    LETTER

      Vol:
    E94-B No:9
      Page(s):
    2488-2491

    This letter presents a performance evaluation of wireless communications applicable into a capsule endoscope. A numerical model to describe the received signal strength (RSS) radiated from a capsule-sized signal generator is derived through measurements in which a liquid phantom is used that has electrical constants equivalent to human tissue specified by IEC 62209-1. By introducing this model and taking into account the characteristics of its direction pattern of the capsule and propagation distance between the implanted capsule and on-body antenna, a cumulative distribution function (CDF) of the received SNR is evaluated. Then, simulation results related to the error ratio in the wireless channel are obtained. These results show that the frequencies of 611 MHz or lesser would be useful for the capsule endoscope applications from the view point of error rate performance. Further, we show that the use of antenna diversity brings additional gain to this application.

  • Adaptive Noise Suppression Algorithm for Speech Signal Based on Stochastic System Theory

    Akira IKUTA  Hisako ORIMOTO  

     
    PAPER

      Vol:
    E94-A No:8
      Page(s):
    1618-1627

    Numerous noise suppression methods for speech signals have been developed up to now. In this paper, a new method to suppress noise in speech signals is proposed, which requires a single microphone only and doesn't need any priori-information on both noise spectrum and pitch. It works in the presence of noise with high amplitude and unknown direction of arrival. More specifically, an adaptive noise suppression algorithm applicable to real-life speech recognition is proposed without assuming the Gaussian white noise, which performs effectively even though the noise statistics and the fluctuation form of speech signal are unknown. The effectiveness of the proposed method is confirmed by applying it to real speech signals contaminated by noises.

  • Near-Optimal Signal Detection Based on the MMSE Detection Using Multi-Dimensional Search for Correlated MIMO Channels Open Access

    Liming ZHENG  Kazuhiko FUKAWA  Hiroshi SUZUKI  Satoshi SUYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:8
      Page(s):
    2346-2356

    This paper proposes a low-complexity signal detection algorithm for spatially correlated multiple-input multiple-output (MIMO) channels. The proposed algorithm sets a minimum mean-square error (MMSE) detection result to the starting point, and searches for signal candidates in multi-dimensions of the noise enhancement from which the MMSE detection suffers. The multi-dimensional search is needed because the number of dominant directions of the noise enhancement is likely to be more than one over the correlated MIMO channels. To reduce the computational complexity of the multi-dimensional search, the proposed algorithm limits the number of signal candidates to O(NT) where NT is the number of transmit antennas and O( ) is big O notation. Specifically, the signal candidates, which are unquantized, are obtained as the solution of a minimization problem under a constraint that a stream of the candidates should be equal to a constellation point. Finally, the detected signal is selected from hard decisions of both the MMSE detection result and unquantized signal candidates on the basis of the log likelihood function. For reducing the complexity of this process, the proposed algorithm decreases the number of calculations of the log likelihood functions for the quantized signal candidates. Computer simulations under a correlated MIMO channel condition demonstrate that the proposed scheme provides an excellent trade-off between BER performance and complexity, and that it is superior to conventional one-dimensional search algorithms in BER performance while requiring less complexity than the conventional algorithms.

  • Distributed Mobility Control in Proxy Mobile IPv6 Networks

    Heeyoung JUNG  Moneeb GOHAR  Ji-In KIM  Seok-Joo KOH  

     
    PAPER

      Vol:
    E94-B No:8
      Page(s):
    2216-2224

    In future mobile networks, the ever-increasing loads imposed by mobile Internet traffic will force the network architecture to be changed from hierarchical to flat structure. Most of the existing mobility protocols are based on a centralized mobility anchor, which will process all control and data traffic. In the flat network architecture, however, the centralized mobility scheme has some limitations, such as unwanted traffic flowing into the core network, service degradation by a single point of failure, and increased operational costs, etc. This paper proposes mobility schemes for distributed mobility control in the flat network architecture. Based on the Proxy Mobile IPv6 (PMIP), which is a well-known mobility protocol, we propose the three mobility schemes: Signal-driven PMIP (S-PMIP), Data-driven Distributed PMIP (DD-PMIP), and Signal-driven Distributed PMIP (SD-PMIP). By numerical analysis, we show that the proposed distributed mobility schemes can give better performance than the existing centralized scheme in terms of the binding update and packet delivery costs, and that SD-PMIP provides the best performance among the proposed distributed schemes.

  • DFV-Aware Flip-Flops Using C-Elements

    Changnoh YOON  Youngmin CHO  Jinsang KIM  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E94-C No:7
      Page(s):
    1229-1232

    Advanced nanometer circuits are susceptible to errors caused by process, voltage, and temperature (PVT) variations or due to a single event upset (SEU). State-of-the-art design-for-variability (DFV)-aware flip-flops (FFs) suffer from their area and timing overheads. By utilizing C-element modules, two types of FFs are proposed for error detection and error correction.

  • Differential Behavior Equivalent Classes of Shift Register Equivalents for Secure and Testable Scan Design

    Katsuya FUJIWARA  Hideo FUJIWARA  Hideo TAMAMOTO  

     
    PAPER-Dependable Computing

      Vol:
    E94-D No:7
      Page(s):
    1430-1439

    It is important to find an efficient design-for-testability methodology that satisfies both security and testability, although there exists an inherent contradiction between security and testability for digital circuits. In our previous work, we reported a secure and testable scan design approach by using extended shift registers that are functionally equivalent but not structurally equivalent to shift registers, and showed a security level by clarifying the cardinality of those classes of shift register equivalents (SR-equivalents). However, SR-equivalents are not always secure for scan-based side-channel attacks. In this paper, we consider a scan-based differential-behavior attack and propose several classes of SR-equivalent scan circuits using dummy flip-flops in order to protect the scan-based differential-behavior attack. To show the security level of those SR-equivalent scan circuits, we introduce a differential-behavior equivalent relation and clarify the number of SR-equivalent scan circuits, the number of differential-behavior equivalent classes and the cardinality of those equivalent classes.

  • An Automatic Method of Mapping I/O Sequences of Chip Execution onto High-level Design for Post-Silicon Debugging

    Yeonbok LEE  Takeshi MATSUMOTO  Masahiro FUJITA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:7
      Page(s):
    1519-1529

    Post-silicon debugging is getting even more critical to shorten the time-to-market than ever, as many more bugs escape pre-silicon verification according to the increasing design scale and complexity. Post-silicon debugging is generally harder than pre-silicon debugging due to the limited observability and controllability of internal signal values. Conventionally, simulation of corresponding low-level designs such as RTL or gate-level has been used to get observability and controllability, which is inefficient for contemporary large designs. In this paper, we introduce a post-silicon debugging approach using simulation of high-level designs, instead of low-level designs. To realize such a debugging approach, we propose an I/O sequence mapping method that converts I/O sequences of chip executions to those of the corresponding high-level design. First, we provide a formal definition of I/O sequence mapping and relevant notions. Then, based on the definition, we propose an I/O sequence mapping method by executing FSMs representing the interface specifications of the target design. Also, we propose an implementation of the proposed method to get further efficiency. We demonstrate that the proposed method can be effectively applied to several practical design examples with various interfaces.

  • Experimental Assessment of a Resilient PCE/GMPLS Controlled Translucent Wavelength Switched Optical Network

    Lei LIU  Takehiro TSURITANI  Ramon CASELLAS  Ricardo MARTÍNEZ  Raül MUÑOZ  Munefumi TSURUSAWA  Itsuro MORITA  

     
    PAPER

      Vol:
    E94-B No:7
      Page(s):
    1831-1844

    A translucent wavelength switched optical network (WSON) is a cost-efficient infrastructure between opaque networks and transparent optical networks, which aims at seeking a graceful balance between network cost and service provisioning performance. In this paper, we experimentally present a resilient translucent WSON with the control of an enhanced path computation element (PCE) and extended generalized multi-protocol label switching (GMPLS) controllers. An adaptive routing and wavelength assignment scheme with the consideration of accumulated physical impairments, wavelength availabilities and regenerator allocation is experimentally demonstrated and evaluated for dynamic provisioning of lightpaths. By using two different network scenarios, we experimentally verify the feasibility of the proposed solutions in support of translucent WSON, and quantitatively evaluate the path computation latency, network blocking probability and service disruption time during end-to-end lightpath restoration. We also deeply analyze the experimental results and discuss the synchronization between the PCE and the network status. To the best of our knowledge, the most significant progress and contribution of this paper is that, for the first time, all the proposed methodologies in support of PCE/GMPLS controlled translucent WSON, including protocol extensions and related algorithms, are implemented in a network testbed and experimentally evaluated in detail, which allows verifying their feasibility and effectiveness when being potentially deployed into real translucent WSON.

  • Active Noise Control System for Reducing MR Noise

    Masafumi KUMAMOTO  Masahiro KIDA  Ryotaro HIRAYAMA  Yoshinobu KAJIKAWA  Toru TANI  Yoshimasa KURUMI  

     
    PAPER-Engineering Acoustics

      Vol:
    E94-A No:7
      Page(s):
    1479-1486

    We propose an active noise control (ANC) system for reducing periodic noise generated in a high magnetic field such as noise generated from magnetic resonance imaging (MRI) devices (MR noise). The proposed ANC system utilizes optical microphones and piezoelectric loudspeakers, because specific acoustic equipment is required to overcome the high-field problem, and consists of a head-mounted structure to control noise near the user's ears and to compensate for the low output of the piezoelectric loudspeaker. Moreover, internal model control (IMC)-based feedback ANC is employed because the MR noise includes some periodic components and is predictable. Our experimental results demonstrate that the proposed ANC system (head-mounted structure) can significantly reduce MR noise by approximately 30 dB in a high field in an actual MRI room even if the imaging mode changes frequently.

  • An Algorithm for Attitude Signal Simulation Based on Visible Satellite Synchronous Scheduling

    Qing CHANG  Wei QI  Lvqian ZHANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E94-B No:7
      Page(s):
    2114-2117

    In view of the frequent and complex changes of GNSS visible satellite constellation in attitude determination system, an improved attitude signal simulation algorithm for high dynamic satellite signal simulator is proposed. Based on Software Radio architecture, elevation calculation in the antenna coordinate system and channel state control logic under the condition of carrier attitude changes are introduced into the algorithm to implement synchronous scheduling of visible satellite constellation and attitude signal simulation. This work guarantees the simulator to run constantly and stably for a long time with the advantages of high precision and low complexity. Compared with synchronous positioning results from the receiver, the simulation results show that not only can the output signals of the simulator accurately reflect the carrier's attitude characteristics, but also no step error is generated and the positioning precision is not influenced when visible satellite constellation changes.

  • Phonetically Balanced Text Corpus Design Using a Similarity Measure for a Stereo Super-Wideband Speech Database

    Yoo Rhee OH  Yong Guk KIM  Mina KIM  Hong Kook KIM  Mi Suk LEE  Hyun Joo BAE  

     
    PAPER-Speech and Hearing

      Vol:
    E94-D No:7
      Page(s):
    1459-1466

    In this paper, we propose a text corpus design method for a Korean stereo super-wideband speech database. Since a small-sized text corpus for speech coding is generally required for speech coding, the corpus should be designed to comply with the pronunciation behavior of natural conversation in order to ensure efficient speech quality tests. To this end, the proposed design method utilizes a similarity measure between the phoneme distribution occurring from natural conversation and that from the designed text corpus. In order to achieve this goal, we first collect and refine text data from textbooks and websites. Next, a corpus is designed from the refined text data based on the similarity measure to compare phoneme distributions. We then construct a Korean stereo super-wideband speech (K-SW) database using the designed text corpus, where the recording environment is set to meet the conditions defined by ITU-T. Finally, the subjective quality of the K-SW database is evaluated using an ITU-T super-wideband codec in order to demonstrate that the K-SW database is useful for developing and evaluating super-wideband codecs.

  • Efficient Interference Cancellation Detector in Sparse Rician Frequency Selective Fading Channels

    Jieling WANG  Yinghui ZHANG  Hong YANG  Kechu YI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2178-2180

    In this letter, the interference cancellation technique is introduced to single carrier (SC) block transmission systems in sparse Rician frequency selective fading channels, and an effective equalizer is presented. Hard decision on the transmitted signal is made by commonly used SC equalizers, and every multipath signal can be constructed by the initial solution and channel state information. Then, final demodulation result is obtained by the line-of-sight component in the received signal which can be achieved by cancelling the other multipath signals in the received signal. The solution can be further used to construct the multipath signals allowing a multistage detector with higher performance to be realized. It is shown by Monte Carlo simulations in an SUI-5 channel that the new scheme offers dramatically higher performance than traditional equalization schemes.

  • Lightweight One-Time Signature for Short Messages

    Dae Hyun YUM  Pil Joong LEE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E94-A No:7
      Page(s):
    1567-1575

    One-time signature schemes have been used as an important cryptographic tool for various applications. To generate a signature on a message, the state-of-the-art one-time signature requires roughly one hash function evaluation and one modular multiplication. We propose a new one-time signature scheme for short messages that needs only one integer multiplication (i.e., without modular reduction or hash function evaluation). Theoretically, our construction is based on a generic transformation from identification protocols secure against active attacks into secure one-time signature schemes for short messages, where the Fiat-Shamir technique is not used. To obtain efficient instantiation of the transformation, we prove that the GPS identification protocol is secure against active attacks, which may be of independent interest.

  • Optimal Selection Criterion of the Modulation and Coding Scheme in Consideration of the Signaling Overhead of Mobile WiMAX Systems

    Jaewoo SO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2153-2157

    An optimal selection criterion of the modulation and coding scheme (MCS) for maximizing spectral efficiency is proposed in consideration of the signaling overhead of mobile WiMAX systems with a hybrid automatic repeat request mechanism. A base station informs users about the resource assignments in each frame, and the allocation process generates a substantial signaling overhead, which influences the system throughput. However, the signaling overhead was ignored in previous MCS selection criteria. In this letter, the spectral efficiency is estimated on the basis of the signaling overhead and the number of transmissions. The performance of the proposed MCS selection criterion is evaluated in terms of the spectral efficiency in the mobile WiMAX system, with and without persistent allocation.

  • A New Threshold Setting Method of GNSS Signal Acquisition under Near-Far Situation

    Liu YANG  Jin TIAN  

     
    PAPER-Satellite Communications

      Vol:
    E94-B No:7
      Page(s):
    2082-2091

    This paper firstly analysis the coherent correlation, non-coherent accumulation detector used in weak satellite signal detection mathematically and statistically, and derives its single threshold based on the CFAR (constant false alarm rate). And then the paper improved the detector under the situation of more than one satellite existing with different signal power. Based on this new type of detector, a threshold calculation method is introduced considering the effect of near-far problem in the weak signal detection. Finally the method is verified and compared to the traditional single threshold with simulated data and collected intermediate frequency real data. The results show that this new threshold method can detect signal efficiently with lower false alarm possibility and larger detection possibility.

  • Compensation of Nonlinear Fibre Impairments in Coherent Systems Employing Spectrally Efficient Modulation Formats

    Danish RAFIQUE  Jian ZHAO  Andrew D. ELLIS  

     
    PAPER

      Vol:
    E94-B No:7
      Page(s):
    1815-1822

    We investigate electronic mitigation of linear and nonlinear fibre impairments and compare various digital signal processing techniques, including electronic dispersion compensation (EDC), single-channel back-propagation (SC-BP) and back-propagation with multiple channel processing (MC-BP) in a nine-channel 112 Gb/s PM-mQAM (m=4,16) WDM system, for reaches up to 6,320 km. We show that, for a sufficiently high local dispersion, SC-BP is sufficient to provide a significant performance enhancement when compared to EDC, and is adequate to achieve BER below FEC threshold. For these conditions we report that a sampling rate of two samples per symbol is sufficient for practical SC-BP, without significant penalties.

  • All-Optical NRZ-to-RZ Data Format Conversion with Picosecond Duration-Tunable and Pedestal Suppressed Operations

    Quang NGUYEN-THE  Motoharu MATSUURA  Hung NGUYEN TAN  Naoto KISHI  

     
    PAPER

      Vol:
    E94-C No:7
      Page(s):
    1160-1166

    We demonstrate an all-optical picosecond pulse duration-tunable nonreturn-to-zero (NRZ)-to-return-to-zero (RZ) data format conversion using a Raman amplifier-based compressor and a fiber-based four-wave mixing (FWM) switch. A NRZ data signal is injected into the fiber-based FWM switch (AND gate) with a compressed RZ clock by the Raman amplifier-based compressor, and convert to RZ data signal by the fiber-based FWM switch. The compressed RZ clock train acts as a pump signal in the fiber-based FWM switch to perform the NRZ-to-RZ data format conversion. By changing the Raman pump power of the Raman amplifier-based compressor, it is possible to tune the pulse duration of the converted RZ data signal from 15 ps to 2 ps. In all the tuning range, the receiver sensitivity at bit error rate (BER) of 10-9 for the converted RZ data signal was about 1.31.7 dB better than the receiver sensitivity of the input NRZ data signal. Moreover, the pulse pedestal of the converted RZ data signals is well suppressed owing to the FWM process in the fiber-based FWM switch.

  • A Secure Structured Multisignature Scheme Based on a Non-commutative Ring Homomorphism

    Naoto YANAI  Eikoh CHIDA  Masahiro MAMBO  

     
    PAPER

      Vol:
    E94-A No:6
      Page(s):
    1346-1355

    Verifying the signing order is sometimes very important in multisignature schemes. A multisignature scheme in which the signing order can be verified is called structured multisignature scheme and many such schemes have been proposed so far. However, there are not many structured multisignature schemes utilizing an algebraic structure of underlying algebraic operation. Ohmori, Chida, Shizuya and Nishizeki have proposed a structured multisignature scheme by utilizing a non-commutative ring homomorphism. Since their scheme does not fully reflect the structure of signers and its rigorous security analysis is not provided, we construct an improved structured multisignature scheme overcoming these problems by utilizing the non-commutative ring homomorphism in a different way and discuss its rigorous security against various attacks, including signer structure forgery, rogue key attack and attack-0 under the discrete logarithm assumption. As far as we know, the scheme in [30], which does not use non-commutative ring homomorphism, guarantees the most rigorous security but the number of signers is restricted in order to prevent attack-0. In contrast, our scheme overcomes attack-0 by virtue of a ring homomorphism and no restriction is imposed on the number of signers.

  • COLA: COmmon Layer Architecture for Adaptive Power Control and Access Technology Assignment in New Generation Networks

    John Paul TORREGOZA  Pham Ngoc THAI  Won Joo HWANG  Yun Sop HAN  Fumio TERAOKA  Martin ANDRE  Hiroaki HARAI  

     
    PAPER

      Vol:
    E94-B No:6
      Page(s):
    1526-1535

    Cognitive radio in network core devices, such as basestations, is being considered as a spectrum management solution for future society's communication demands. Aside from new resource allocation algorithms, efficient inter- and intra-protocol processing should be considered. In this paper, we propose an opportunistic cross layer architecture called COmmon Layer Architecture (COLA) for information exchange between arbitrary layers in New Generation Networks with network-oriented cognitive radio. COLA provides a means for faster information exchange between OSI layers by introducing abstraction at each layer and designing primitives for communication between each abstraction layer. Emulation and simulation results showed improvements, compared to conventional networks, in disrupted service (42% reduction), average delay (47% reduced) and packet drop ratio (22% reduced) in the scenario analyzed.

801-820hit(2667hit)