Yuhei YAMAMOTO Naoki SHIBATA Tokiyoshi MATSUDA Hidenori KAWANISHI Mutsumi KIMURA
Thermoelectric effect of Ga-Sn-O (GTO) thin films has been investigated for Internet-of-Things application. It is found that the amorphous GTO thin films provide higher power factors (PF) than the polycrystalline ones, which is because grain boundaries block the electron conduction in the polycrystalline ones. It is also found that the GTO thin films annealed in vacuum provide higher PF than those annealed in air, which is because oxygen vacancies are terminated in those annealed in air. The PF and dimensionless figure of merit (ZT) is not so excellent, but the cost effectiveness is excellent, which is the most important for some examples of the Internet-of-Things application.
Shinji FUKUMA Yoshiro IWAI Shin-ichiro MORI
We propose a fine structure imaging for the surface and its inside of solid material such as coated drill bits with TiN (Titanium Nitride). We call this method i-MSE (innovative MSE) since the fine structure is visualized with a local mechanical strength (the local erosion rate) which is obtained from a set of erosion depth profiles measured with Micro Slurry-jet Erosion test (MSE). The local erosion rate at any sampling point is estimated from the depth profile using a sliding window regression and for the rest of the 2-dimensional points it is interpolated with the mean value coordinate technique. The interpolated rate is converted to a 2D image (i-MSE image) with a color map. The i-MSE image can distinguish layers if the testing material surface is composed of coats which have different resistance to erosion (erosive wear), while microscopic image such as SEM (Scanning Electron Microscope) and a calotest just provides appearance information, not physical characteristics. Experiments for some layered specimens show that i-MSE can be an effective tool to visualize the structure and to evaluate the mechanical characteristics for the surface and the inside of solid material.
Kensuke NAKAJIMA Hironobu YAMADA Mihoko TAKEDA
Direct-current superconducting quantum interference device (dc-SQUID) based on intrinsic Josephson junction (IJJ) has been fabricated using Bi2Sr2CaCu2O8+δ (Bi-2212) films grown on MgO substrates with surface steps. The superconducting loop parallel to the film surface across the step edge contains two IJJ stacks along the edge. The number of crystallographically stacked IJJ for each SQUIDs were 40, 18 and 3. Those IJJ SQUIDs except for one with 40 stacked IJJs revealed clear periodic modulation of the critical current for the flux quanta through the loops. It is anticipated that phase locking of IJJ has an effect on the modulation depth of the IJJ dc-SQUID.
Yoshiki HAYAMA Katsumi NAKATSUHARA Shinta UCHIBORI Takeshi NISHIZAWA
Horizontal slot waveguides enable light to be strongly confined in thin regions. The strong confinement of light in the slot region offers the advantages of enhancing the interaction of light with matter and providing highly sensitive sensing devices. We theoretically investigated fundamental characteristics of horizontal slot waveguides using Nb2O5. The coupling coefficient between SiO2 slot and air slot waveguides was calculated. Characteristics of bending loss in slot waveguide were also analyzed. The etching conditions in reactive ion etching needed to obtain a sidewall with high verticality were studied. We propose a process for fabricating horizontal slot waveguides using Nb2O5 thin film deposition and selective etching of SiO2. Horizontal slot waveguides were fabricated that had an SiO2 slot of less than 30 nm SiO2. The propagated light passing through the slot waveguides was also obtained.
Binjian ZENG Jiajia LIAO Qiangxiang PENG Min LIAO Yichun ZHOU Shun-ichiro OHMI
For the further scaling and lower voltage applications of nonvolatile ferroelectric memory, the effect of Kr/O2 sputtering for SrBi2Ta2O9 (SBT) thin film formation was investigated utilizing a SrBi2Ta2O9 target. The 80-nm-thick SBT films were deposited by radio-frequency (RF) magnetron sputtering on Pt/Ti/SiO2/Si(100). Compared with Ar/O2 sputtering, the ferroelectric properties such as larger remnant polarization (Pr) of 3.2 μC/cm2 were observed with decrease of leakage current in case of Kr/O2 sputtering. X-ray diffraction (XRD) patterns indicated that improvement of the crystallinity with suppressing pyrochlore phases and enhancing ferroelectric phases was realized by Kr/O2 sputtering.
Hiroya MORITA Hideki KAWAI Kenji TAKEHARA Naoki MATSUDA Toshihiko NAGAMURA
Photophysical properties of water-soluble porphyrin were studied in aqueous solutions with/without DNA and in DNA solid films. Ultrathin films were prepared from aqueous DNA solutions by a spin-coating method on glass or on gold nanoparticles (AuNPs). Remarkable enhancement of phosphorescence was observed for porphyrin immobilized in DNA films spin-coated on AuNPs, which was attributed to the electric field enhancement and the increased radiative rate by localized surface plasmon resonance of AuNPs.
The thin film organic photovoltaic cells (OPVs) using organic semiconductors are inferior to oxgen-resistance and water-resistance, and the OPVs have a drawback that the photoelectric conversion efficiency (η) is low. For high efficiency of the OPVs, control of bulk heterojunction (BHJ) structure in the active layer is demanded. Therefore, it is thought that we can control the BHJ structure easily if we can bring a change in the aggregated structure and the crystallinity of the BHJ structure by introducing the third component that is different from the organic semiconductor into the activity layer. In this study, we introduced peptide consisting of phenylalanine of 2 molecules into the active layer prepared by poor solvent addition effect for the organic thin film solar cells and intended to try high efficiency of the organic thin film solar cells and examined the electrochemistry characteristic of the cells.
Hiroshi GOTO Hiroaki TAO Shinya MORITA Yasuyuki TAKANASHI Aya HINO Tomoya KISHI Mototaka OCHI Kazushi HAYASHI Toshihiro KUGIMIYA
We have investigated the microwave-detected photoconductivity responses from the amorphous In--Ga--Zn--O (a-IGZO) thin films. The time constant extracted by the slope of the slow part of the reflectivity signals are correlated with TFT performances. We have evaluated the influences of the sputtering conditions on the quality of a-IGZO thin film, as well as the influences of gate insulation films and annealing conditions, by comparing the TFT characteristics with the microwave photoconductivity decay ($mu$-PCD). It is concluded that the $mu$-PCD is a promising method for in-line process monitoring for the IGZO-TFTs fabrication.
Mitsuru OHTAKE Daisuke SUZUKI Fumiyoshi KIRINO Masaaki FUTAMOTO
CoPt and Co3Pt alloy thin films are prepared on MgO(111), SrTiO3(111), and Al2O3(0001) single-crystal substrates by varying the substrate temperature in a range from room temperature to 600°C by using an ultra-high vacuum radio-frequency magnetron sputtering system. The formation of metastable ordered phase and the structural thermal stability are briefly investigated. CoPt and Co3Pt films with the close-packed plane parallel to the substrate surface grow epitaxially on these oxide single-crystal substrates. CoPt epitaxial films are also formed by employing Pt, Pd, Cu, Cr, Ti, and Ru underlayers hetero-epitaxially grown on MgO(111) substrates. The crystal structure is evaluated by considering the order degree and the atomic stacking sequence of close-packed plane. Metastable ordered phases of L11, Bh, and D019 are preferentially formed in the CoPt and the Co3Pt films deposited around 300°C. Metastable ordered phase formation is influenced by the substrate temperature, the film composition, and the underlayer material. With increasing the substrate temperature up to around 300°C, the order degree increases. As the substrate temperature further increases, the order degree decreases. Annealing a disordered film at 300°C does not effectively enhance ordering. The CoPt and the Co3Pt films which include metastable ordered phases have flat surfaces and show strong perpendicular magnetic anisotropies reflecting the magnetocrystalline anisotropies of ordered crystals.
Kiyoshi MORIMOTO Nobuyasu SUZUKI Kazuhiko YAMANAKA Masaaki YURI Janet MILLIEZ Xinbing LIU
This report describes a crystallization method we developed for amorphous (a)-Si film by using 405-nm laser diodes (LDs). The proposed method has been used to fabricate bottom gate (BG) microcrystalline (µc)-Si TFTs for the first time. A µc-Si film with high crystallinity was produced and high-performance BG µc-Si TFTs with a field effect mobility of 3.6 cm2/Vs and a current on/off ratio exceeding 108 were successfully demonstrated. To determine the advantages of a 405-nm wavelength, a heat flow simulation was performed with full consideration of light interference effects. Among commercially available solid-state lasers and LDs with wavelengths having relatively high optical absorption coefficients for a-Si, three (405, 445, and 532 nm) were used in the simulation for comparison. Results demonstrated that wavelength is a crucial factor for the uniformity, efficiency, and process margin in a-Si crystallization for BG µc-Si TFTs. The 405-nm wavelength had the best simulation results. In addition, the maximum temperature profile on the gate electrode through the simulation well explained the actual crystallinity distributions of the µc-Si films.
Shigehito MIKI Taro YAMASHITA Mikio FUJIWARA Masahide SASAKI Zhen WANG
We report on the enhancement of system detection efficiency in a superconducting nanowire single-photon detector (SNSPD) by applying the optical cavity structure. The nanowire was made using 4-nm-thick NbN thin films and covered with an SiO cavity and Au mirror designed for 1300-1600 nm wavelengths. The device is mounted into fiber-coupled packages, and installed in a practical multichannel system based on GM cryocoolers. System detection efficiency depends on the absorptance of cavity structure, and reached 28% and 40% at 1550 nm and 1310 nm wavelengths, respectively. These values were considerably higher than an SNSPD without optical cavity.
Mitsunori YABE Shigeru UMEMURA Shigeru HIRONO
To achieve conductive and wear-durable carbon thin films by metal doping, we deposited Au-, Pt-, and Pd-doped carbon thin films by RF sputtering, and evaluated the dopant concentrations, resistivity, and scratch hardness. Among the doped films, the Pt-doped film with low Pt concentration was most suitable from a practical perspective.
Ching-Lin FAN Yi-Yan LIN Yan-Hang YANG Hung-Che CHEN
The electrical properties of poly-Si thin film transistors (TFTs) using rapid thermal annealing with various gate oxide thicknesses were studied in this work. It was found that Poly-Si TFT electrical characteristics with the thinnest gate oxide thickness after RTA treatment exhibits the largest performance improvement compared to TFT with thick oxide as a result of the increased incorporated amounts of the nitrogen and oxygen. Thus, the combined effects can maintain the advantages and avoid the disadvantages of scaled-down oxide, which is suitable for small-to-medium display mass production.
Ashraf M. Abdel HALEEM Masashi KATO Masaya ICHIMURA
Indium-sulfide-oxide thin films have been successfully deposited on indium-tin-oxide-coated glass from an aqueous solution containing Na2S2O3 and In2(SO4)3 by electrochemical deposition using a periodic 2-step-pulse voltage. The films have been annealed in nitrogen atmosphere for an hour at different temperatures; namely, 100, 200, 300 and 400. Then, the as-deposited and annealed films were characterized structurally, morphologically and optically. X-ray photoelectron spectroscopy (XPS) study was performed in order to understand the chemical states of the oxygen involved in the film composition. The photosensitivity was observed by means of photoelectrochemical measurements, which confirmed that the as-deposited and annealed films showed n-type conduction. Moreover, a heterostructure solar cell that has indium sulfide as a buffer layer and tin sulfide as an absorber was fabricated and characterized.
Doo-Hee CHO Sang-Hee Ko PARK Shinhyuk YANG Chunwon BYUN Min Ki RYU Jeong-Ik LEE Chi-Sun HWANG Sung Min YOON Hye Yong CHU Kyoung Ik CHO
We have fabricated the transparent bottom gate and top gate TFTs using new oxide material of Al-Zn-Sn-O (AZTO) as an active layer. The AZTO active layer was deposited by RF magnetron sputtering at room temperature. Our novel TFT showed good TFT performance without post-annealing. The field effect mobility and the sub-threshold swing were improved by the post-annealing, and the mobility increased with SnO2 content. The AZTO TFT (about 4 mol% AlOx, 66 mol% ZnO, and 30 mol% SnO2) exhibited a mobility of 10.3 cm2/Vs, a turn-on voltage of 0.4 V, a sub-threshold swing of 0.6 V/dec, and an on/off ratio of 109. Though the bottom gate AZTO TFT showed good electrical performance, the bias stability was relatively poor. The bias stability was significantly improved in the top gate AZTO TFT. We have successfully fabricated the transparent AMOLED panel using the back-plane composed with top gate AZTO TFT array.
Tomoyuki KOGANEZAWA Ichiro HIROSAWA Hidenori ISHII Takahiro SAKAI
We developed a new method for characterizing molecular distribution in very thin liquid crystal layer (5-40 nm) evaporated onto rubbed polyimide film used by grazing-incidence X-ray diffraction (GIXD). The diffraction peaks corresponding to intermolecular correlation perpendicular to longitudinal axis of liquid crystal molecule and the clear anisotropic distribution of liquid crystal molecules in a thin layer were successfully observed. We found that in the vicinity of the alignment film, the intermolecular spacing correlation perpendicular to longitudinal axis of the 5CB molecule was expanded by the alignment film, and that the ordering of the 5CB was not so high. As the distance from the alignment film the spacing came close to the intrinsic intermolecular spacing.
Ayako OMURA Hirofumi SHIOZAKI Shigeo HARA Tohru KAWAMOTO Akihito GOTOH Masahito KURIHARA Masaomi SAKAMOTO Hisashi TANAKA
The insoluble Prussian-blue (PB) pigment becomes possible to disperse in aqueous solution by covering their surfaces with ferrocyanide anions. The thin film fabricated with these water-dispersible PB nanoparticles shows evident electrochromic color changes between +0.8 V to -0.4 V on an ITO substrate. The mass change of the thin film during an electrochemical reaction is measured by means of electrochemical quartz crystal microbalance (EQCM). According to the EQCM analysis, the filling rate of water-dispersible PB nanoparticles in the film is 37.7% as compared with an assumed perfect crystal PB film.
Alexander TIKHONRAVOV Michael TRUBETSKOV Ichiro KASAHARA
A new paradigm in the design of optical coatings connected with an outstanding computational efficiency of modern design techniques is discussed. Several other topics including pre-production error analysis, monitoring of coating production, and computational manufacturing of optical coatings are considered.
Koichi MUTO Satoru ODASHIMA Norimitsu NASU Osamu MICHIKAMI
Ga-doped ZnO thin films were prepared by RF magnetron sputtering. The effects of adding H2 to pure Ar sputtering gas were investigated. In the case of pure Ar at 2 Pa, the resistivity is 7.4510-3 Ωcm, whereas for Ar+1%H2 at 0.3 Pa, it markedly decreases to 2.5210-4 Ωcm. In this case, the carrier density and Hall mobility are 1.121021 cm-3 and 23.4 cm2/Vs, respectively. This conductive film also exhibits a transmittance of 90% within the visible-wavelength range. The addition of H2 and the decrease in the pressure results in the fabrication of a significantly more transparent and conductive film.
Hidehiko YODA Koichi MURO Kazuo SHIRAISHI
Rugate thin film optical filters are useful for designing arbitrary-shaped spectra, such as multistep or triangular spectra. A technique for synthesizing the refractive index distribution of rugate filters was used to suppress unwanted ripples on the spectrum. The refractive index of an amorphous hydrogenated silicon oxide (a-SiOx:H) rugate thin film was minutely controlled with a resolution of 0.001 using radio-frequency (RF) magnetron sputtering. The fabricated rugate filters had multistep bands over a wavelength range of 1260-1670 nm or good linearity over 1290-1650 nm.