The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] time(2217hit)

941-960hit(2217hit)

  • Error Correction Using Time-Dependent Correlation and Transmit Power Control in Sensor Networks

    Suguru DOKI  Hiraku OKADA  Kenichi MASE  

     
    PAPER

      Vol:
    E91-B No:11
      Page(s):
    3426-3433

    In a sensor network, a certain area or environment are observed by a lot of distributed sensor nodes and a sink collects data observed by sensor nodes. The observed data sequences that sensor nodes generate may have space- and/or time-dependent correlation. This correlation is regarded as redundant information and can be used for channel error correction by joint decoder using correlation. In this paper, we propose the joint decoding scheme using the time-dependent correlation consisting of the consecutive data sequences generated by a sensor node. We also propose a power control scheme using the time-dependent correlation for reduction in energy consumption. We evaluate the packet error rate and the energy consumption ratio, and clarify the effect of our proposed schemes.

  • Reduced-Complexity Near-ML Detector for a Coded DSTTD-OFDM System

    Hyounkuk KIM  Hyuncheol PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:11
      Page(s):
    3749-3752

    This letter introduces an efficient near-maximum likelihood (ML) detector for a coded double space-time transmit diversity-orthogonal frequency division multiplexing (DSTTD-OFDM) system. The proposed near-ML detector constructs a candidate vector set through a relaxed minimization method. It reduces computational loads from O(2|A|2) to O(|A|2), where |A| is the modulation order. Numerical results indicate that the proposed near-ML detector provides both almost ML performance and considerable complexity savings.

  • Cross-Layer Design for Low-Power Wireless Sensor Node Using Wave Clock

    Takashi TAKEUCHI  Yu OTAKE  Masumi ICHIEN  Akihiro GION  Hiroshi KAWAGUCHI  Chikara OHTA  Masahiko YOSHIMOTO  

     
    PAPER

      Vol:
    E91-B No:11
      Page(s):
    3480-3488

    We propose Isochronous-MAC (I-MAC) using the Long-Wave Standard Time Code (so called "wave clock"), and introduce cross-layer design for a low-power wireless sensor node with I-MAC. I-MAC has a periodic wakeup time synchronized with the actual time, and thus we take the wave clock. However, a frequency of a crystal oscillator varies along with temperature, which incurs a time difference among nodes. We present a time correction algorithm to address this problem, and shorten the time difference. Thereby, the preamble length in I-MAC can be minimized, which saves communication power. For further power reduction, a low-power crystal oscillator is also proposed, as a physical-layer design. We implemented I-MAC on an off-the-shelf sensor node to estimate the power saving, and verified that the proposed cross-layer design reduces 81% of the total power, compared to Low Power Listening.

  • A Revenue-Based Bandwidth Sharing for Advance and Immediate Reservation Calls

    Dong-Hoon YI  JongWon KIM  

     
    PAPER-Network

      Vol:
    E91-B No:11
      Page(s):
    3617-3626

    To guarantee the timely provisioning of QoS to real-time oriented multiparty and distributed computing applications (e.g., video conferencing and grid computing) that require the utilization of time and quantity-related resources, the resource should be reserved in advance. However, this new type of reservation (i.e., advance reservation) may collide with legacy (i.e., immediate) reservations that do not specify their session duration. In this paper, to suggest a balanced solution between sharing pools of resources and the managing of collisions between reservation calls, a revenue-based resource sharing scheme (focusing on the bandwidth) is proposed. The proposed scheme attempts to avoid possible collisions by employing a virtual profile of resources reserved in advance in an effort to achieve enhanced resource utilization. It is shown through NS-2 [22] -based network simulations that the proposed scheme can achieve balanced performance when compared with other schemes, including static resource partitioning and complete resource sharing.

  • Precoder for Chip-Interleaved CDMA Using Space-Time Block-Coding

    Yuji KIMURA  Koji SHIBATA  Takakazu SAKAI  

     
    LETTER-Spectrum Technologies

      Vol:
    E91-A No:10
      Page(s):
    2885-2888

    We study the performances of a synchronous chip-interleaved, block spread (CIBS) code division multiple access (CDMA) with space-time block-coding (STBC) in the presence of frequency-selective fading. For providing the space diversity gain due to STBC, we introduce the optimum precoding for the STBC. Zero-forcing and minimum mean square error equalizers for CIBS-CDMA are derived. Simulation results confirm that the proposed precoder is valid under the frequency selective fading.

  • New Minimum Decoding Complexity Quasi-Orthogonal Space-Time Block Code for 8 Transmit Antennas

    Changhyeon CHAE  Daewon CHOI  Taejin JUNG  

     
    PAPER-MIMO

      Vol:
    E91-A No:10
      Page(s):
    2990-2994

    In this paper, a new full-rate space-time block code (STBC) possessing a quasi-orthogonal (QO) property is proposed for QAM and 8 transmit antennas. This code is designed by serially concatenating a real constellation-rotating precoder with the Alamouti scheme. The QO property enables ML decoding to be done with joint detection of only four real symbols like the conventional minimum decoding complexity QO-STBC (MDC-QO-STBC). However, the proposed code is guaranteed to achieve full spatial diversity for general QAM unlike the MDC-QO-STBC which is specifically presented for only 4-QAM. By computer simulation results, we show that the proposed code exhibits the identical and slightly degraded error performance with the MDC-QO-STBC for 4-QAM and the Sharma's QO-STBC for 4 and 16-QAM, respectively. Finally, we present a new modified scheme of the original code so that there is no any discontinuity of transmission at each transmit antenna, without any loss of error performance.

  • Space-Time Block Codes with Limited Feedback Using Antenna Grouping

    Chan-Byoung CHAE  Seijoon SHIM  Robert W. HEATH,Jr.  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3387-3390

    We propose an antenna grouping method that improves the error rate performance of space-time codes in a wide range of mobility environments. The idea is to group symbols to antennas based on limited feedback from the mobile station to utilize all antennas. Our approach requires only two bits of feedback information to achieve better link performance and full rate for a certain four transmit antenna system. Numerical results confirm the bit/frame error gains over the Alamouti-based space-time block code and antenna subset selection strategies.

  • Gramian-Preserving Frequency Transformation for Linear Discrete-Time State-Space Systems

    Shunsuke KOSHITA  Satoru TANAKA  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Systems and Control

      Vol:
    E91-A No:10
      Page(s):
    3014-3021

    This paper proposes the Gramian-preserving frequency transformation for linear discrete-time state-space systems. In this frequency transformation, we replace each delay element of a discrete-time system with an allpass system that has a balanced realization. This approach can generate transformed systems that have the same controllability/observability Gramians as those of the original system. From this result, we show that the Gramian-preserving frequency transformation gives us transformed systems with different magnitude characteristics, but with the same structural property with respect to the Gramians as that of the original system. This paper also presents a simple method for realization of the Gramian-preserving frequency transformation. This method makes use of the cascaded normalized lattice structure of allpass systems.

  • S3: Smart Session Selection for Voice Communications in Next Generation Wireless Network

    Tein-Yaw CHUNG  Fong-Ching YUAN  Yung-Mu CHEN  Baw-Jhiune LIU  

     
    PAPER-Mobile Mulimedia Communication

      Vol:
    E91-A No:10
      Page(s):
    2995-3002

    Selecting transparently a proper network connection for voice communication will be a fundamental requirement in future multi-mode heterogeneous wireless network. This paper presented a smart session selection (S3) scheme to meet this requirement. Instead of selecting a best access network as in conventional Always Best Connected (ABC) paradigm, S3 enables users to select a best network connection, which consists of source and destination access network pair, to satisfy quality constraint and users' preference. To support S3, we develop a user profile to specify network connection priority. Meanwhile IP multimedia subsystem (IMS) is extended to make smart decision for users. Finally, Analytic Hierarchy Process (AHP) is used to recommend a network connection with assistance of user profile and IMS signaling. An example is illustrated to show that AHP can successfully select a good network connection that fulfills the requirement of users.

  • Performance Analysis of Transmit Diversity Systems with Multiple Antenna Replacement

    Ki-Hong PARK  Hong-Chuan YANG  Young-Chai KO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3281-3287

    Transmit diversity systems based on orthogonal space-time block coding (OSTBC) usually suffer from rate loss and power spreading. Proper antenna selection scheme can help to more effectively utilize the transmit antennas and transmission power in such systems. In this paper, we propose a new antenna selection scheme for such systems based on the idea of antenna switching. In particular, targeting at reducing the number of pilot channels and RF chains, the transmitter now replaces the antennas with the lowest received SNR with unused ones if the output SNR of space time decoder at the receiver is below a certain threshold. With this new scheme, not only the number of pilot channels and RF chains to be implemented is decreased, the average amount of feedback information is also reduced. To analyze the performance of this scheme, we derive the exact integral closed form for the probability density function (PDF) of the received SNR. We show through numerical examples that the proposed scheme offers better performance than traditional OSTBC systems using all available transmitting antennas, with a small amount of feedback information. We also examine the effect of different antenna configuration and feedback delay.

  • Research on Channel Quantization Algorithm of Time Correlated Channels

    Zhenjie FENG  Taiyi ZHANG  Erlin ZENG  

     
    LETTER-Digital Signal Processing

      Vol:
    E91-A No:10
      Page(s):
    3063-3066

    Focusing on time correlation of real communication channels, a channel quantization algorithm based on finite state vector quantization (FSVQ) is proposed. Firstly channels are partitioned into finite states, then codebooks corresponding to each state are constructed, which are used to quantize channels transferred from corresponding states. Further, the state transition function is designed to ensure the synchronization between transmitter and receiver. The proposed algorithm can achieve improved performance with the same feedback load compared with classical memoryless channel quantizer without consideration of the influence of time correlation. Simulation results verify the effectiveness of the proposed algorithm.

  • Schedulability Analysis of Periodic and Sporadic Tasks Using a Timed Discrete Event Model with Memorable Events

    Jung-Min YANG  Seong-Jin PARK  

     
    LETTER-Systems and Control

      Vol:
    E91-A No:10
      Page(s):
    3076-3079

    In a real-time system, when the execution of a task is preempted by another task, the interrupted task falls into a blocked state. Since its re-execution begins from the interrupted point generally, the task's timer containing the remaining time until its completion should be maintained in the blocked state. This is the reason for introducing the notion of memorable events in this paper. We present a new timed discrete event model (TDEM) that adds the memorable events to the TDEM framework of Brandin and Wonham (1994). Using supervisory control theory upon the proposed TDEM, we analyze the schedulability of preemptable periodic and sporadic tasks executing on a uniprocessor.

  • Maximizing Total QoS-Provisioning of Image Streams with Limited Energy Budget

    Wan Yeon LEE  Kyong Hoon KIM  Young Woong KO  

     
    PAPER

      Vol:
    E91-B No:10
      Page(s):
    3060-3068

    To fully utilize the limited battery energy of mobile electronic devices, we propose an adaptive adjustment method of processing quality for multiple image stream tasks running with widely varying execution times. This adjustment method completes the worst-case executions of the tasks with a given budget of energy, and maximizes the total reward value of processing quality obtained during their executions by exploiting the probability distribution of task execution times. The proposed method derives the maximum reward value for the tasks being executable with arbitrary processing quality, and near maximum value for the tasks being executable with a finite number of processing qualities. Our evaluation on a prototype system shows that the proposed method achieves larger reward values, by up to 57%, than the previous method.

  • Adaptive Multimedia Flow Splitting over WiMAX and WiFi Links

    Jong-Ok KIM  Toshiaki YAMAMOTO  Akira YAMAGUCHI  Sadao OBANA  

     
    PAPER

      Vol:
    E91-B No:10
      Page(s):
    3085-3094

    To meet the bandwidth requirements of multimedia services, multipath transmission is a promising solution. In this paper, we consider multi-access networks, where WiMAX and WiFi links are set up at the same time. Multipath transmission suffers from the intrinsic problem of out-of-order packet delivery. This has an adverse impact on TCP and even UDP-based delay sensitive applications. However, multimedia streaming services allow some tolerance to transmission delay. Motivated by this observation, we investigate how to split multimedia flows over heterogeneous links. Wireless link capacity varies widely over time due to dynamic radio conditions. The capacity variations should be promptly reflected in traffic splitting in order to accomplish an equal load-balance. A practical prototype system has been implemented. We have performed extensive measurements from a prototype system. Through practical experimental results, we could verify two major research goals. One is that multimedia splitting can improve the overall network performance (e.g., the permitted multimedia sessions or the aggregated bandwidth) while still keeping an acceptable media quality. The other is an adaptation capability to varying link quality. It has been widely investigated under various radio conditions and different monitoring intervals. It is shown that the adaptive technique is effective under dynamic radio environments.

  • Design of New Quasi-Orthogonal STBC with Minimum Decoding Complexity for Four Transmit Antennas

    Changhyeon CHAE  Taejin JUNG  Intae HWANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3368-3370

    A new Space-Time Block Code (STBC) achieving full rate and full diversity for general QAM and four transmit antennas is proposed. This code also possesses a quasi-orthogonal (QO) property like the conventional Minimum Decoding Complexity QO-STBC (MDC-QO-STBC), leading to joint ML detection of only two real symbols. The proposed code is shown to exhibit the identical error performance with the existing MDC-QO-STBC. However, the proposed code has an advantage in transceiver implementation since this code can be modified so that the increase of PAPR occurs on only two transmit antennas, whereas MDC-QO-STBC incurs a PAPR increase on all transmit antennas.

  • An EM-Based Time-Domain Channel Estimation Algorithm Using a priori Information

    Feng YANG  Yu ZHANG  Jian SONG  Changyong PAN  Zhixing YANG  

     
    LETTER-Broadcast Systems

      Vol:
    E91-B No:9
      Page(s):
    3041-3044

    Based on the expectation-maximization (EM) algorithm, an iterative time-domain channel estimation approach capable of using a priori information is proposed for orthogonal frequency division multiplexing (OFDM) systems in this letter: it outperforms its noniterative counterpart in terms of estimation accuracy as well as bit error rate (BER) performance. Numerical simulations demonstrate that an SNR gain of 1 dB at BER=10-4 with only one iteration and estimation mean square error (MSE) which nearly coincides with the Cramer-Rao bound (CRB) in the low SNR region can be obtained, thanks to the efficient use of a priori information.

  • Multiple View Geometry under Projective Projection in Space-Time

    Cheng WAN  Jun SATO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E91-D No:9
      Page(s):
    2353-2359

    This paper introduces multiple view geometry under projective projection from four-dimensional space to two-dimensional space which can represent multiple view geometry under the projection of space-time. We show the multifocal tensors defined under space-time projective projection can be derived from non-rigid object motions viewed from multiple cameras with arbitrary translational motions, and they are practical for generating images of non-rigid object motions viewed from cameras with arbitrary translational motions. The method is tested in real image sequences.

  • Distributed Computing Software Building-Blocks for Ubiquitous Computing Societies

    K.H. (Kane) KIM  

     
    INVITED PAPER

      Vol:
    E91-D No:9
      Page(s):
    2233-2242

    The steady approach of advanced nations toward realization of ubiquitous computing societies has given birth to rapidly growing demands for new-generation distributed computing (DC) applications. Consequently, economic and reliable construction of new-generation DC applications is currently a major issue faced by the software technology research community. What is needed is a new-generation DC software engineering technology which is at least multiple times more effective in constructing new-generation DC applications than the currently practiced technologies are. In particular, this author believes that a new-generation building-block (BB), which is much more advanced than the current-generation DC object that is a small extension of the object model embedded in languages C++, Java, and C#, is needed. Such a BB should enable systematic and economic construction of DC applications that are capable of taking critical actions with 100-microsecond-level or even 10-microsecond-level timing accuracy, fault tolerance, and security enforcement while being easily expandable and taking advantage of all sorts of network connectivity. Some directions considered worth pursuing for finding such BBs are discussed.

  • Improved Decision-Feedback Detection Schemes for STBC over Time-Selective Fading Channels

    Cheolkyu SHIN  Hyounkuk KIM  Hyuncheol PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:9
      Page(s):
    3013-3016

    This letter proposes two efficient decision-feedback (DF) detection schemes for space-time block code (STBC) over time-selective fading channels. The existing DF detection causes error propagation when the first symbol is not detected correctly. However, the proposed detection schemes provide two candidates according to a channel gain or an average log-likelihood ratio (LLR) based selection rule and choose a better candidate for the first symbol. Simulation results show that the proposed detection schemes reduce error propagation and yield significant signal-to-noise ratio (SNR) gain with moderate complexity, compared to the existing DF detection scheme.

  • Performance of Coherent Receivers for PCTH-Based UWB System with Diversiform Modulation Schemes

    Yun-rui GONG  Di HE  Chen HE  Ling-ge JIANG  

     
    PAPER-Communications and Sequences

      Vol:
    E91-A No:9
      Page(s):
    2489-2496

    The performances of a PCTH-based communication UWB system with diversiform modulation schemes are compared on the classic AWGN channel propagation and the realistic IEEE-UWB channel model. By employing different versions of modulation at the transmitters, the performances of an optimal receiver and a Rake receiver with various combining schemes are studied in this paper. The numerical results for several compared cases illustrate the tradeoff between transmitter diversity and receiver complexity. It is shown that the actual performance of the PAM-PCTH scheme can be better in both kinds of channel propagation. We also find that the PCTH-based UWB system with the Rake receiver has better performance than the conventional proposal for overcoming the multipath propagation effects in the UWB indoor environment.

941-960hit(2217hit)