The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tin(3578hit)

541-560hit(3578hit)

  • Scattering of a Beam Wave by the End-Face of an Ordered Waveguide System at Low Grazing Incidence

    Akira KOMIYAMA  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E101-C No:1
      Page(s):
    48-51

    In the plane wave scattering from a periodic grating high order diffracted plane waves disappear at a low grazing angle limit of incidence. In this paper the scattering of a beam wave by the end-face of an ordered waveguide system composed of identical cores of equal space is treated by the perturbation method and the scattered field is analytically derived. The possibility that high order diffracted beam waves remain at a low grazing angle limit of incidence is shown.

  • An Empirical Study of Classifier Combination Based Word Sense Disambiguation

    Wenpeng LU  Hao WU  Ping JIAN  Yonggang HUANG  Heyan HUANG  

     
    PAPER-Natural Language Processing

      Pubricized:
    2017/08/23
      Vol:
    E101-D No:1
      Page(s):
    225-233

    Word sense disambiguation (WSD) is to identify the right sense of ambiguous words via mining their context information. Previous studies show that classifier combination is an effective approach to enhance the performance of WSD. In this paper, we systematically review state-of-the-art methods for classifier combination based WSD, including probability-based and voting-based approaches. Furthermore, a new classifier combination based WSD, namely the probability weighted voting method with dynamic self-adaptation, is proposed in this paper. Compared with existing approaches, the new method can take into consideration both the differences of classifiers and ambiguous instances. Exhaustive experiments are performed on a real-world dataset, the results show the superiority of our method over state-of-the-art methods.

  • Color-Based Cooperative Cache and Its Routing Scheme for Telco-CDNs

    Takuma NAKAJIMA  Masato YOSHIMI  Celimuge WU  Tsutomu YOSHINAGA  

     
    PAPER-Information networks

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2847-2856

    Cooperative caching is a key technique to reduce rapid growing video-on-demand's traffic by aggregating multiple cache storages. Existing strategies periodically calculate a sub-optimal allocation of the content caches in the network. Although such technique could reduce the generated traffic between servers, it comes with the cost of a large computational overhead. This overhead will be the cause of preventing these caches from following the rapid change in the access pattern. In this paper, we propose a light-weight scheme for cooperative caching by grouping contents and servers with color tags. In our proposal, we associate servers and caches through a color tag, with the aim to increase the effective cache capacity by storing different contents among servers. In addition to the color tags, we propose a novel hybrid caching scheme that divides its storage area into colored LFU (Least Frequently Used) and no-color LRU (Least Recently Used) areas. The colored LFU area stores color-matching contents to increase cache hit rate and no-color LRU area follows rapid changes in access patterns by storing popular contents regardless of their tags. On the top of the proposed architecture, we also present a new routing algorithm that takes benefit of the color tags information to reduce the traffic by fetching cached contents from the nearest server. Evaluation results, using a backbone network topology, showed that our color-tag based caching scheme could achieve a performance close to the sub-optimal one obtained with a genetic algorithm calculation, with only a few seconds of computational overhead. Furthermore, the proposed hybrid caching could limit the degradation of hit rate from 13.9% in conventional non-colored LFU, to only 2.3%, which proves the capability of our scheme to follow rapid insertions of new popular contents. Finally, the color-based routing scheme could reduce the traffic by up to 31.9% when compared with the shortest-path routing.

  • Reliable Transmission Parameter Signalling Detection for DTMB-A Standard

    Jingjing LIU  Chao ZHANG  Changyong PAN  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/06/07
      Vol:
    E100-B No:12
      Page(s):
    2156-2163

    In the advanced digital terrestrial/television multimedia broadcasting (DTMB-A) standard, a preamble based on distance detection (PBDD) is adopted for robust synchronization and signalling transmission. However, traditional signalling detection method will completely fail to work under severe frequency selective channels with ultra-long delay spread 0dB echoes. In this paper, a novel transmission parameter signalling detection method is proposed for the preamble in DTMB-A. Compared with the conventional signalling detection method, the proposed scheme works much better when the maximum channel delay is close to the length of the guard interval (GI). Both theoretical analyses and simulation results demonstrate that the proposed algorithm significantly improves the accuracy and robustness of detecting the transmitted signalling.

  • An Analysis of Time Domain Reed Solomon Decoder with FPGA Implementation

    Kentaro KATO  Somsak CHOOMCHUAY  

     
    PAPER-Computer System

      Pubricized:
    2017/08/23
      Vol:
    E100-D No:12
      Page(s):
    2953-2961

    This paper analyzes the time domain Reed Solomon Decoder with FPGA implementation. Data throughput and area is carefully evaluated compared with typical frequency domain Reed Solomon Decoder. In this analysis, three hardware architecture to enhance the data throughput, namely, the pipelined architecture, the parallel architecture, and the truncated arrays, is evaluated, too. The evaluation reveals that the number of the consumed resources of RS(255, 239) is about 20% smaller than those of the frequency domain decoder although data throughput is less than 10% of the frequency domain decoder. The number of the consumed resources of the pipelined architecture is 28% smaller than that of the parallel architecture when data throughput is same. It is because the pipeline architecture requires less extra logics than the parallel architecture. To get higher data throughput, the pipelined architecture is better than the parallel architecture from the viewpoint of consumed resources.

  • Low Cost and Fault Tolerant Parallel Computing Using Stochastic Two-Dimensional Finite State Machine

    Xuechun WANG  Yuan JI  Wendong CHEN  Feng RAN  Aiying GUO  

     
    LETTER-Architecture

      Pubricized:
    2017/07/18
      Vol:
    E100-D No:12
      Page(s):
    2866-2870

    Hardware implementation of neural networks usually have high computational complexity that increase exponentially with the size of a circuit, leading to more uncertain and unreliable circuit performance. This letter presents a novel Radial Basis Function (RBF) neural network based on parallel fault tolerant stochastic computing, in which number is converted from deterministic domain to probabilistic domain. The Gaussian RBF for middle layer neuron is implemented using stochastic structure that reduce the hardware resources significantly. Our experimental results from two pattern recognition tests (the Thomas gestures and the MIT faces) show that the stochastic design is capable to maintain equivalent performance when the stream length set to 10Kbits. The stochastic hidden neuron uses only 1.2% hardware resource compared with the CORDIC algorithm. Furthermore, the proposed algorithm is very flexible in design tradeoff between computing accuracy, power consumption and chip area.

  • Known-Key Attack on SM4 Block Cipher

    HyungChul KANG  Deukjo HONG  Jaechul SUNG  Seokhie HONG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:12
      Page(s):
    2985-2990

    We present the first known-key attack on SM4, which is the Chinese standard block cipher made for the wireless LAN WAPI. We make a known-key distinguisher using rebound techniques with the time complexity of 212.75. Then, with the distinguisher, we provide near-collision attacks on MMO and MP hash modes of SM4. Precisely, we find a 104-bit near-collision for 13 rounds of SM4 with the time complexity of 213.30 and a 32-bit near-collision for 17 rounds of SM4 with the time complexity of 212.91. They are much more efficient than generic attacks for the case of random permutation.

  • A New Energy Efficient Clustering Algorithm Based on Routing Spanning Tree for Wireless Sensor Network

    Yating GAO  Guixia KANG  Jianming CHENG  Ningbo ZHANG  

     
    PAPER-Network

      Pubricized:
    2017/05/26
      Vol:
    E100-B No:12
      Page(s):
    2110-2120

    Wireless sensor networks usually deploy sensor nodes with limited energy resources in unattended environments so that people have difficulty in replacing or recharging the depleted devices. In order to balance the energy dissipation and prolong the network lifetime, this paper proposes a routing spanning tree-based clustering algorithm (RSTCA) which uses routing spanning tree to analyze clustering. In this study, the proposed scheme consists of three phases: setup phase, cluster head (CH) selection phase and steady phase. In the setup phase, several clusters are formed by adopting the K-means algorithm to balance network load on the basis of geographic location, which solves the randomness problem in traditional distributed clustering algorithm. Meanwhile, a conditional inter-cluster data traffic routing strategy is created to simplify the networks into subsystems. For the CH selection phase, a novel CH selection method, where CH is selected by a probability based on the residual energy of each node and its estimated next-time energy consumption as a function of distance, is formulated for optimizing the energy dissipation among the nodes in the same cluster. In the steady phase, an effective modification that counters the boundary node problem by adjusting the data traffic routing is designed. Additionally, by the simulation, the construction procedure of routing spanning tree (RST) and the effect of the three phases are presented. Finally, a comparison is made between the RSTCA and the current distributed clustering protocols such as LEACH and LEACH-DT. The results show that RSTCA outperforms other protocols in terms of network lifetime, energy dissipation and coverage ratio.

  • Implementing Exchanged Hypercube Communication Patterns on Ring-Connected WDM Optical Networks

    Yu-Liang LIU  Ruey-Chyi WU  

     
    PAPER-Interconnection networks

      Pubricized:
    2017/08/04
      Vol:
    E100-D No:12
      Page(s):
    2771-2780

    The exchanged hypercube, denoted by EH(s,t), is a graph obtained by systematically removing edges from the corresponding hypercube, while preserving many of the hypercube's attractive properties. Moreover, ring-connected topology is one of the most promising topologies in Wavelength Division Multiplexing (WDM) optical networks. Let Rn denote a ring-connected topology. In this paper, we address the routing and wavelength assignment problem for implementing the EH(s,t) communication pattern on Rn, where n=s+t+1. We design an embedding scheme. Based on the embedding scheme, a near-optimal wavelength assignment algorithm using 2s+t-2+⌊2t/3⌋ wavelengths is proposed. We also show that the wavelength assignment algorithm uses no more than an additional 25 percent of (or ⌊2t-1/3⌋) wavelengths, compared to the optimal wavelength assignment algorithm.

  • Gauss-Seidel HALS Algorithm for Nonnegative Matrix Factorization with Sparseness and Smoothness Constraints

    Takumi KIMURA  Norikazu TAKAHASHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:12
      Page(s):
    2925-2935

    Nonnegative Matrix Factorization (NMF) with sparseness and smoothness constraints has attracted increasing attention. When these properties are considered, NMF is usually formulated as an optimization problem in which a linear combination of an approximation error term and some regularization terms must be minimized under the constraint that the factor matrices are nonnegative. In this paper, we focus our attention on the error measure based on the Euclidean distance and propose a new iterative method for solving those optimization problems. The proposed method is based on the Hierarchical Alternating Least Squares (HALS) algorithm developed by Cichocki et al. We first present an example to show that the original HALS algorithm can increase the objective value. We then propose a new algorithm called the Gauss-Seidel HALS algorithm that decreases the objective value monotonically. We also prove that it has the global convergence property in the sense of Zangwill. We finally verify the effectiveness of the proposed algorithm through numerical experiments using synthetic and real data.

  • Cost Aware Offloading Selection and Resource Allocation for Cloud Based Multi-Robot Systems

    Yuan SUN  Xing-she ZHOU  Gang YANG  

     
    LETTER-Software System

      Pubricized:
    2017/08/28
      Vol:
    E100-D No:12
      Page(s):
    3022-3026

    In this letter, we investigate the computation offloading problem in cloud based multi-robot systems, in which user weights, communication interference and cloud resource limitation are jointly considered. To minimize the system cost, two offloading selection and resource allocation algorithms are proposed. Numerical results show that the proposed algorithms both can greatly reduce the overall system cost, and the greedy selection based algorithm even achieves near-optimal performance.

  • A New Method of Translational Compensation for Spatial Precession Targets with Rotational Symmetry

    Rong CHEN  Cunqian FENG  Sisan HE  Yi RAO  

     
    LETTER-Analog Signal Processing

      Vol:
    E100-A No:12
      Page(s):
    3061-3066

    The extraction of micro-motion parameters is deeply influenced by the precision of estimation on translational motion parameters. Based on the periodicity of micro-motion, the quadratic polynomial fitting is carried out among range delays to align envelope. The micro-motion component of phase information is eliminated by conjugate multiplication after which the translational motion parameters are estimated. Then the translational motion is precisely compensated through the third order polynomial fitting. Results of simulation demonstrate that the algorithm put forward here can realize the precise compensation for translational motion parameters even under an environment with low signal noise ratio (SNR).

  • A Cheating-Detectable (k, L, n) Ramp Secret Sharing Scheme

    Wataru NAKAMURA  Hirosuke YAMAMOTO  Terence CHAN  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:12
      Page(s):
    2709-2719

    In this paper, we treat (k, L, n) ramp secret sharing schemes (SSSs) that can detect impersonation attacks and/or substitution attacks. First, we derive lower bounds on the sizes of the shares and random number used in encoding for given correlation levels, which are measured by the mutual information of shares. We also derive lower bounds on the success probabilities of attacks for given correlation levels and given sizes of shares. Next we propose a strong (k, L, n) ramp SSS against substitution attacks. As far as we know, the proposed scheme is the first strong (k, L, n) ramp SSSs that can detect substitution attacks of at most k-1 shares. Our scheme can be applied to a secret SL uniformly distributed over GF(pm)L, where p is a prime number with p≥L+2. We show that for a certain type of correlation levels, the proposed scheme can achieve the lower bounds on the sizes of the shares and random number, and can reduce the success probability of substitution attacks within nearly L times the lower bound when the number of forged shares is less than k. We also evaluate the success probability of impersonation attack for our schemes. In addition, we give some examples of insecure ramp SSSs to clarify why each component of our scheme is essential to realize the required security.

  • Relay Assignment for Energy Harvesting Cooperative Communication Systems with Long-Term CSI and Energy Side Information

    Feng KE  Yue ZHANG  Yuanyi DENG  Yuehua DING  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/06/19
      Vol:
    E100-B No:12
      Page(s):
    2139-2146

    A relay assignment scheme is proposed in this paper that minimizes the mean delay of transmission for energy harvesting (EH) cooperative communication systems, whose source node and relay nodes are all equipped with energy harvesters. We jointly consider the long-term channel side information (CSI) and energy side information (ESI) of all nodes, and formulate the delay minimization problem as an integer programming problem. To solve this problem, a refined cyclic coordinate method (RCCM) is proposed that considers the cases of fixed-packet-length (FPL) and variable-packet-length (VPL) transmission. Simulation results show that the proposed scheme achieves performance close to that of the real-time relay selection (RRS) scheme with instantaneous CSI and ESI, which gives upper bound of the performance. Moreover, compared with the simple relay rotation (SRR) scheme where each relay has equal service time, the performance of the proposed scheme is significantly improved.

  • Energy-Performance Modeling of Speculative Checkpointing for Exascale Systems

    Muhammad ALFIAN AMRIZAL  Atsuya UNO  Yukinori SATO  Hiroyuki TAKIZAWA  Hiroaki KOBAYASHI  

     
    PAPER-High performance computing

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2749-2760

    Coordinated checkpointing is a widely-used checkpoint/restart protocol for fault-tolerance in large-scale HPC systems. However, this protocol will involve massive amounts of I/O concentration, resulting in considerably high checkpoint overhead and high energy consumption. This paper focuses on speculative checkpointing, a CPR mechanism that allows for temporal distribution of checkpointings to avoid I/O concentration. We propose execution time and energy models for speculative checkpointing, and investigate energy-performance characteristics when speculative checkpointing is adopted in exascale systems. Using these models, we study the benefit of speculative checkpointing over coordinated checkpointing under various realistic scenarios for exascale HPC systems. We show that, compared to coordinated checkpointing, speculative checkpointing can achieve up to a 11% energy reduction at the cost of a relatively-small increase in the execution time. In addition, a significant energy-performance trade-off is expected when the system scale exceeds 1.2 million nodes.

  • A Layout-Oriented Routing Method for Low-Latency HPC Networks

    Ryuta KAWANO  Hiroshi NAKAHARA  Ikki FUJIWARA  Hiroki MATSUTANI  Michihiro KOIBUCHI  Hideharu AMANO  

     
    PAPER-Interconnection networks

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2796-2807

    End-to-end network latency has become an important issue for parallel application on large-scale high performance computing (HPC) systems. It has been reported that randomly-connected inter-switch networks can lower the end-to-end network latency. This latency reduction is established in exchange for a large amount of routing information. That is, minimal routing on irregular networks is achieved by using routing tables for all destinations in the networks. In this work, a novel distributed routing method called LOREN (Layout-Oriented Routing with Entries for Neighbors) to achieve low-latency with a small routing table is proposed for irregular networks whose link length is limited. The routing tables contain both physically and topologically nearby neighbor nodes to ensure livelock-freedom and a small number of hops between nodes. Experimental results show that LOREN reduces the average latencies by 5.8% and improves the network throughput by up to 62% compared with a conventional compact routing method. Moreover, the number of required routing table entries is reduced by up to 91%, which improves scalability and flexibility for implementation.

  • Energy Budget Formulation in Progress-Based Nearest Forwarding Routing Policy for Energy-Efficient Wireless Sensor Networks

    Sho SASAKI  Yuichi MIYAJI  Hideyuki UEHARA  

     
    PAPER-Wireless networks

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2808-2817

    A number of battery-driven sensor nodes are deployed to operate a wireless sensor network, and many routing protocols have been proposed to reduce energy consumption for data communications in the networks. We have proposed a new routing policy which employs a nearest-neighbor forwarding based on hop progress. Our proposed routing method has a topology parameter named forwarding angle to determine which node to connect with as a next-hop, and is compared with other existing policies to clarify the best topology for energy efficiency. In this paper, we also formulate the energy budget for networks with the routing policy by means of stochastic-geometric analysis on hop-count distributions for random planar networks. The formulation enables us to tell how much energy is required for all nodes in the network to forward sensed data in a pre-deployment phase. Simulation results show that the optimal topology varies according to node density in the network. Direct communication to the sink is superior for a small-sized network, and the multihop routing is more effective as the network becomes sparser. Evaluation results also demonstrate that our energy formulation can well approximate the energy budget, especially for small networks with a small forwarding angle. Discussion on the error with a large forwarding angle is then made with a geographical metric. It is finally clarified that our analytical expressions can obtain the optimal forwarding angle which yields the best energy efficiency for the routing policy when the network is moderately dense.

  • DiSC: A Distributed In-Storage Computing Platform Using Cost-Effective Hardware Devices

    Jaehwan LEE  Joohwan KIM  Ji Sun SHIN  

     
    LETTER-Computer System

      Pubricized:
    2017/08/23
      Vol:
    E100-D No:12
      Page(s):
    3018-3021

    The ability to efficiently process exponentially increasing data remains a challenging issue for computer platforms. In legacy computing platforms, large amounts of data can cause performance bottlenecks at the I/O interfaces between CPUs and storage devices. To overcome this problem, the in-storage computing (ISC) technique is introduced, which offloads some of the computations from the CPUs to the storage devices. In this paper, we propose DiSC, a distributed in-storage computing platform using cost-effective hardware. First, we designed a general-purpose ISC device, a so-called DiSC endpoint, by combining an inexpensive single-board computer (SBC) and a hard disk. Second, a Mesos-based resource manager is adapted into the DiSC platform to schedule the DiSC endpoint tasks. To draw comparisons to a general CPU-based platform, a DiSC testbed is constructed and experiments are carried out using essential applications. The experimental results show that DiSC attains cost-efficient performance advantages over a desktop, particularly for searching and filtering workloads.

  • Quantum Associative Memory with Quantum Neural Network via Adiabatic Hamiltonian Evolution

    Yoshihiro OSAKABE  Hisanao AKIMA  Masao SAKURABA  Mitsunaga KINJO  Shigeo SATO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2017/08/09
      Vol:
    E100-D No:11
      Page(s):
    2683-2689

    There is increasing interest in quantum computing, because of its enormous computing potential. A small number of powerful quantum algorithms have been proposed to date; however, the development of new quantum algorithms for practical use remains essential. Parallel computing with a neural network has successfully realized certain unique functions such as learning and recognition; therefore, the introduction of certain neural computing techniques into quantum computing to enlarge the quantum computing application field is worthwhile. In this paper, a novel quantum associative memory (QuAM) is proposed, which is achieved with a quantum neural network by employing adiabatic Hamiltonian evolution. The memorization and retrieval procedures are inspired by the concept of associative memory realized with an artificial neural network. To study the detailed dynamics of our QuAM, we examine two types of Hamiltonians for pattern memorization. The first is a Hamiltonian having diagonal elements, which is known as an Ising Hamiltonian and which is similar to the cost function of a Hopfield network. The second is a Hamiltonian having non-diagonal elements, which is known as a neuro-inspired Hamiltonian and which is based on interactions between qubits. Numerical simulations indicate that the proposed methods for pattern memorization and retrieval work well with both types of Hamiltonians. Further, both Hamiltonians yield almost identical performance, although their retrieval properties differ. The QuAM exhibits new and unique features, such as a large memory capacity, which differs from a conventional neural associative memory.

  • Towards 5G Network Slicing over Multiple-Domains Open Access

    Ibrahim AFOLABI  Adlen KSENTINI  Miloud BAGAA  Tarik TALEB  Marius CORICI  Akihiro NAKAO  

     
    INVITED PAPER

      Pubricized:
    2017/05/16
      Vol:
    E100-B No:11
      Page(s):
    1992-2006

    One of the key objectives of 5G is to evolve the current mobile network architecture from “one-fit-all” design model to a more customized and dynamically scaling one that enables the deployment of parallel systems, tailored to the service requirements on top of a shared infrastructure. Indeed, the envisioned 5G services may require different needs in terms of capacity, latency, bandwidth, reliability and security, which cannot be efficiently sustained by the same network infrastructure. Coming to address these customization challenges, network softwarization expressed through Software Defined Networking (SDN) programmable network infrastructures, Network Function Virtualization (NFV) running network functions as software and cloud computing flexibility paradigms, is seen as a possible panacea to addressing the variations in the network requirements posed by the 5G use cases. This will enable network flexibility and programmability, allow the creation and lifecycle management of virtual network slices tailored to the needs of 5G verticals expressed in the form of Mobile Virtual Network Operators (MVNOs) for automotive, eHealth, massive IoT, massive multimedia broadband. In this vein, this paper introduces a potential 5G architecture that enables the orchestration, instantiation and management of end-to-end network slices over multiple administrative and technological domains. The architecture is described from both the management and the service perspective, underlining the common functionality as well as how the response to the diversified service requirements can be achieved through proper software network components development.

541-560hit(3578hit)