The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tract(469hit)

1-20hit(469hit)

  • TDEM: Table Data Extraction Model Based on Cell Segmentation Open Access

    Zhe WANG  Zhe-Ming LU  Hao LUO  Yang-Ming ZHENG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/05/30
      Vol:
    E107-D No:10
      Page(s):
    1376-1379

    To accurately extract tabular data, we propose a novel cell-based tabular data extraction model (TDEM). The key of TDEM is to utilize grayscale projection of row separation lines, coupled with table masks and column masks generated by the VGG-19 neural network, to segment each individual cell from the input image of the table. In this way, the text content of the table is extracted from a specific single cell, which greatly improves the accuracy of table recognition.

  • Smart Contract Timestamp Vulnerability Detection Based on Code Homogeneity Open Access

    Weizhi WANG  Lei XIA  Zhuo ZHANG  Xiankai MENG  

     
    LETTER-Software Engineering

      Pubricized:
    2024/05/27
      Vol:
    E107-D No:10
      Page(s):
    1362-1366

    Smart contracts, as a form of digital protocol, are computer programs designed for the automatic execution, control, and recording of contractual terms. They permit transactions to be conducted without the need for an intermediary. However, the economic property of smart contracts makes their vulnerabilities susceptible to hacking attacks, leading to significant losses. In this paper, we introduce a smart contract timestamp vulnerability detection technique HomoDec based on code homogeneity. The core idea of this technique involves comparing the homogeneity between the code of the test smart contract and the existing smart contract vulnerability codes in the database to determine whether the tested code has a timestamp vulnerability. Specifically, HomoDec first explores how to vectorize smart contracts reasonably and efficiently, representing smart contract code as a high-dimensional vector containing features of code vulnerabilities. Subsequently, it investigates methods to determine the homogeneity between the test codes and the ones in vulnerability code base, enabling the detection of potential timestamp vulnerabilities in smart contract code.

  • Unsupervised Intrusion Detection Based on Asymmetric Auto-Encoder Feature Extraction Open Access

    Chunbo LIU  Liyin WANG  Zhikai ZHANG  Chunmiao XIANG  Zhaojun GU  Zhi WANG  Shuang WANG  

     
    PAPER-Information Network

      Pubricized:
    2024/04/25
      Vol:
    E107-D No:9
      Page(s):
    1161-1173

    Aiming at the problem that large-scale traffic data lack labels and take too long for feature extraction in network intrusion detection, an unsupervised intrusion detection method ACOPOD based on Adam asymmetric autoencoder and COPOD (Copula-Based Outlier Detection) algorithm is proposed. This method uses the Adam asymmetric autoencoder with a reduced structure to extract features from the network data and reduce the data dimension. Then, based on the Copula function, the joint probability distribution of all features is represented by the edge probability of each feature, and then the outliers are detected. Experiments on the published NSL-KDD dataset with six other traditional unsupervised anomaly detection methods show that ACOPOD achieves higher precision and has obvious advantages in running speed. Experiments on the real civil aviation air traffic management network dataset further prove that the method can effectively detect intrusion behavior in the real network environment, and the results are interpretable and helpful for attack source tracing.

  • Deep Learning-Inspired Automatic Minutiae Extraction from Semi-Automated Annotations Open Access

    Hongtian ZHAO  Hua YANG  Shibao ZHENG  

     
    PAPER-Vision

      Pubricized:
    2024/04/05
      Vol:
    E107-A No:9
      Page(s):
    1509-1521

    Minutiae pattern extraction plays a crucial role in fingerprint registration and identification for electronic applications. However, the extraction accuracy is seriously compromised by the presence of contaminated ridge lines and complex background scenarios. General image processing-based methods, which rely on many prior hypotheses, fail to effectively handle minutiae extraction in complex scenarios. Previous works have shown that CNN-based methods can perform well in object detection tasks. However, the deep neural networks (DNNs)-based methods are restricted by the limitation of public labeled datasets due to legitimate privacy concerns. To address these challenges comprehensively, this paper presents a fully automated minutiae extraction method leveraging DNNs. Firstly, we create a fingerprint minutiae dataset using a semi-automated minutiae annotation algorithm. Subsequently, we propose a minutiae extraction model based on Residual Networks (Resnet) that enables end-to-end prediction of minutiae. Moreover, we introduce a novel non-maximal suppression (NMS) procedure, guided by the Generalized Intersection over Union (GIoU) metric, during the inference phase to effectively handle outliers. Experimental evaluations conducted on the NIST SD4 and FVC 2004 databases demonstrate the superiority of the proposed method over existing state-of-the-art minutiae extraction approaches.

  • Prohibited Item Detection Within X-Ray Security Inspection Images Based on an Improved Cascade Network Open Access

    Qingqi ZHANG  Xiaoan BAO  Ren WU  Mitsuru NAKATA  Qi-Wei GE  

     
    PAPER

      Pubricized:
    2024/01/16
      Vol:
    E107-A No:5
      Page(s):
    813-824

    Automatic detection of prohibited items is vital in helping security staff be more efficient while improving the public safety index. However, prohibited item detection within X-ray security inspection images is limited by various factors, including the imbalance distribution of categories, diversity of prohibited item scales, and overlap between items. In this paper, we propose to leverage the Poisson blending algorithm with the Canny edge operator to alleviate the imbalance distribution of categories maximally in the X-ray images dataset. Based on this, we improve the cascade network to deal with the other two difficulties. To address the prohibited scale diversity problem, we propose the Re-BiFPN feature fusion method, which includes a coordinate attention atrous spatial pyramid pooling (CA-ASPP) module and a recursive connection. The CA-ASPP module can implicitly extract direction-aware and position-aware information from the feature map. The recursive connection feeds the CA-ASPP module processed multi-scale feature map to the bottom-up backbone layer for further multi-scale feature extraction. In addition, a Rep-CIoU loss function is designed to address the overlapping problem in X-ray images. Extensive experimental results demonstrate that our method can successfully identify ten types of prohibited items, such as Knives, Scissors, Pressure, etc. and achieves 83.4% of mAP, which is 3.8% superior to the original cascade network. Moreover, our method outperforms other mainstream methods by a significant margin.

  • Hierarchical Latent Alignment for Non-Autoregressive Generation under High Compression Ratio

    Wang XU  Yongliang MA  Kehai CHEN  Ming ZHOU  Muyun YANG  Tiejun ZHAO  

     
    PAPER-Natural Language Processing

      Pubricized:
    2023/12/01
      Vol:
    E107-D No:3
      Page(s):
    411-419

    Non-autoregressive generation has attracted more and more attention due to its fast decoding speed. Latent alignment objectives, such as CTC, are designed to capture the monotonic alignments between the predicted and output tokens, which have been used for machine translation and sentence summarization. However, our preliminary experiments revealed that CTC performs poorly on document abstractive summarization, where a high compression ratio between the input and output is involved. To address this issue, we conduct a theoretical analysis and propose Hierarchical Latent Alignment (HLA). The basic idea is a two-step alignment process: we first align the sentences in the input and output, and subsequently derive token-level alignment using CTC based on aligned sentences. We evaluate the effectiveness of our proposed approach on two widely used datasets XSUM and CNNDM. The results indicate that our proposed method exhibits remarkable scalability even when dealing with high compression ratios.

  • Decentralized Incentive Scheme for Peer-to-Peer Video Streaming using Solana Blockchain

    Yunqi MA  Satoshi FUJITA  

     
    PAPER-Information Network

      Pubricized:
    2023/07/13
      Vol:
    E106-D No:10
      Page(s):
    1686-1693

    Peer-to-peer (P2P) technology has gained popularity as a way to enhance system performance. Nodes in a P2P network work together by providing network resources to one another. In this study, we examine the use of P2P technology for video streaming and develop a distributed incentive mechanism to prevent free-riding. Our proposed solution combines WebTorrent and the Solana blockchain and can be accessed through a web browser. To incentivize uploads, some of the received video chunks are encrypted using AES. Smart contracts on the blockchain are used for third-party verification of uploads and for managing access to the video content. Experimental results on a test network showed that our system can encrypt and decrypt chunks in about 1/40th the time it takes using WebRTC, without affecting the quality of video streaming. Smart contracts were also found to quickly verify uploads in about 860 milliseconds. The paper also explores how to effectively reward virtual points for uploads.

  • Attractiveness Computing in Image Media

    Toshihiko YAMASAKI  

     
    INVITED PAPER-Vision

      Pubricized:
    2023/06/16
      Vol:
    E106-A No:9
      Page(s):
    1196-1201

    Our research group has been working on attractiveness prediction, reasoning, and even enhancement for multimedia content, which we call “attractiveness computing.” Attractiveness includes impressiveness, instagrammability, memorability, clickability, and so on. Analyzing such attractiveness was usually done by experienced professionals but we have experimentally revealed that artificial intelligence (AI) based on big multimedia data can imitate or reproduce professionals' skills in some cases. In this paper, we introduce some of the representative works and possible real-life applications of our attractiveness computing for image media.

  • Preventing SNS Impersonation: A Blockchain-Based Approach

    Zhanwen CHEN  Kazumasa OMOTE  

     
    PAPER

      Pubricized:
    2023/05/30
      Vol:
    E106-D No:9
      Page(s):
    1354-1363

    With the rise of social network service (SNS) in recent years, the security of SNS users' private information has been a concern for the public. However, due to the anonymity of SNS, identity impersonation is hard to be detected and prevented since users are free to create an account with any username they want. This could lead to cybercrimes like fraud because impersonation allows malicious users to steal private information. Until now, there are few studies about this problem, and none of them can perfectly handle this problem. In this paper, based on an idea from previous work, we combine blockchain technology and security protocol to prevent impersonation in SNS. In our scheme, the defects of complex and duplicated operations in the previous work are improved. And the authentication work of SNS server is also adjusted to resist single-point, attacks. Moreover, the smart contract is introduced to help the whole system runs automatically. Afterward, our proposed scheme is implemented and tested on an Ethereum test network and the result suggests that it is acceptable and suitable for nowadays SNS network.

  • Digital Rights Management System of Media Convergence Center Based on Ethereum and IPFS

    Runde YU  Zhuowen LI  Zhe CHEN  Gangyi DING  

     
    PAPER-Multimedia Pattern Processing

      Pubricized:
    2023/05/02
      Vol:
    E106-D No:8
      Page(s):
    1275-1282

    In order to solve the problems of copyrights infringement, high cost and complex process of rights protection in current media convergence center, a digital rights management system based on blockchain technology and IPFS (Inter Planetary File System) technology is proposed. Considering that large files such as video and audio cannot be stored on the blockchain directly, IPFS technology is adopted as the data expansion scheme for the data storage layer of the Ethereum platform, IPFS protocol is further used for distributed data storage and transmission of media content. In addition, smart contract is also used to uniquely identify digital rights through NFT (Non-fungible Tokens), which provides the characteristics of digital rights transferability and traceability, and realizes an open, transparent, tamper-proof and traceable digital rights management system for media convergence center. Several experimental results show that it has higher transaction success rate, lower storage consumption and transaction confirmation delay than existing scheme.

  • Field Evaluation of Adaptive Path Selection for Platoon-Based V2N Communications

    Ryusuke IGARASHI  Ryo NAKAGAWA  Dan OKOCHI  Yukio OGAWA  Mianxiong DONG  Kaoru OTA  

     
    PAPER-Network

      Pubricized:
    2022/11/17
      Vol:
    E106-B No:5
      Page(s):
    448-458

    Vehicles on the road are expected to connect continuously to the Internet at sufficiently high speeds, e.g., several Mbps or higher, to support multimedia applications. However, even when passing through a well-facilitated city area, Internet access can be unreliable and even disconnected if the travel speed is high. We therefore propose a network path selection technique to meet network throughput requirements. The proposed technique is based on the attractor selection model and enables vehicles to switch the path from a route connecting directly to a cellular network to a relay type through neighboring vehicles for Internet access. We also develop a mechanism that prevents frequent path switching when the performance of all available paths does not meet the requirements. We conduct field evaluations by platooning two vehicles in a real-world driving environment and confirm that the proposed technique maintains the required throughput of up to 7Mbps on average. We also evaluated our proposed technique by extensive computer simulations of up to 6 vehicles in a platoon. The results show that increasing platoon length yields a greater improvement in throughput, and the mechanism we developed decreases the rate of path switching by up to 25%.

  • Blockchain-Based Pension System Ensuring Security, Provenance and Efficiency

    Minhaz KAMAL  Chowdhury Mohammad ABDULLAH  Fairuz SHAIARA  Abu Raihan Mostofa KAMAL  Md Mehedi HASAN  Jik-Soo KIM  Md Azam HOSSAIN  

     
    LETTER-Office Information Systems, e-Business Modeling

      Pubricized:
    2023/02/21
      Vol:
    E106-D No:5
      Page(s):
    1085-1088

    The literature presents a digitized pension system based on a consortium blockchain, with the aim of overcoming existing pension system challenges such as multiparty collaboration, manual intervention, high turnaround time, cost transparency, auditability, etc. In addition, the adoption of hyperledger fabric and the introduction of smart contracts aim to transform multi-organizational workflow into a synchronized, automated, modular, and error-free procedure.

  • On the Limitations of Computational Fuzzy Extractors

    Kenji YASUNAGA  Kosuke YUZAWA  

     
    LETTER

      Pubricized:
    2022/08/10
      Vol:
    E106-A No:3
      Page(s):
    350-354

    We present a negative result of fuzzy extractors with computational security. Specifically, we show that, under a computational condition, a computational fuzzy extractor implies the existence of an information-theoretic fuzzy extractor with slightly weaker parameters. Our result implies that to circumvent the limitations of information-theoretic fuzzy extractors, we need to employ computational fuzzy extractors that are not invertible by non-lossy functions.

  • The Automatic Generation of Smart Contract Based on Configuration in the Field of Government Services

    Yaoyu ZHANG  Jiarui ZHANG  Han ZHANG  

     
    PAPER-Software System

      Pubricized:
    2022/08/24
      Vol:
    E105-D No:12
      Page(s):
    2066-2074

    With the development of blockchain technology, the automatic generation of smart contract has become a hot research topic. The existing smart contract automatic generation technology still has improvement spaces in complex process, third-party specialized tools required, specific the compatibility of code and running environment. In this paper, we propose an automatic smart contract generation method, which is domain-oriented and configuration-based. It is designed and implemented with the application scenarios of government service. The process of configuration, public state database definition, code generation and formal verification are included. In the Hyperledger Fabric environment, the applicability of the generated smart contract code is verified. Furthermore, its quality and security are formally verified with the help of third-party testing tools. The experimental results show that the quality and security of the generated smart contract code meet the expect standards. The automatic smart contract generation will “elegantly” be applied on the work of anti-disclosure, privacy protection, and prophecy processing in government service. To effectively enable develop “programmable government”.

  • Evaluation and Extraction of Equivalent Circuit Parameters for GSG-Type Bonding Wires Using Electromagnetic Simulator Open Access

    Takuichi HIRANO  

     
    BRIEF PAPER

      Pubricized:
    2022/05/17
      Vol:
    E105-C No:11
      Page(s):
    692-695

    In this paper, the author performed an electromagnetic field simulation of a typical bonding wire structure that connects a chip and a package, and evaluated the signal transmission characteristics (S-parameters). In addition, the inductance per unit length was extracted by comparing with the equivalent circuit of the distributed constant line. It turns out that the distributed constant line model is not sufficient because there are frequencies where chip-package resonance occurs. Below the resonance frequency, the conventional low-frequency approximation model was effective, and it was found that the inductance was about 1nH/mm.

  • Penalized and Decentralized Contextual Bandit Learning for WLAN Channel Allocation with Contention-Driven Feature Extraction

    Kota YAMASHITA  Shotaro KAMIYA  Koji YAMAMOTO  Yusuke KODA  Takayuki NISHIO  Masahiro MORIKURA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2022/04/11
      Vol:
    E105-B No:10
      Page(s):
    1268-1279

    In this study, a contextual multi-armed bandit (CMAB)-based decentralized channel exploration framework disentangling a channel utility function (i.e., reward) with respect to contending neighboring access points (APs) is proposed. The proposed framework enables APs to evaluate observed rewards compositionally for contending APs, allowing both robustness against reward fluctuation due to neighboring APs' varying channels and assessment of even unexplored channels. To realize this framework, we propose contention-driven feature extraction (CDFE), which extracts the adjacency relation among APs under contention and forms the basis for expressing reward functions in disentangled form, that is, a linear combination of parameters associated with neighboring APs under contention). This allows the CMAB to be leveraged with a joint linear upper confidence bound (JLinUCB) exploration and to delve into the effectiveness of the proposed framework. Moreover, we address the problem of non-convergence — the channel exploration cycle — by proposing a penalized JLinUCB (P-JLinUCB) based on the key idea of introducing a discount parameter to the reward for exploiting a different channel before and after the learning round. Numerical evaluations confirm that the proposed method allows APs to assess the channel quality robustly against reward fluctuations by CDFE and achieves better convergence properties by P-JLinUCB.

  • Development of a Blockchain-Based Online Secret Electronic Voting System

    Young-Sung IHM  Seung-Hee KIM  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2022/05/16
      Vol:
    E105-D No:8
      Page(s):
    1361-1372

    This paper presents the design, implementation, and verification of a blockchain-based online electronic voting system that ensures accuracy and reliability in electronic voting and its application to various types of voting using blockchain technologies, such as distributed ledgers and smart contracts. Specifically, in this study, the connection between the electronic voting system and blockchain nodes is simplified using the REST API design, and the voting opening and counting information is designed to store the latest values in the distributed ledger in JSON format, using a smart contract that cannot be falsified. The developed electronic voting system can provide blockchain authentication, secret voting, forgery prevention, ballot verification, and push notification functions, all of which are currently not supported in existing services. Furthermore, the developed system demonstrates excellence on all evaluation items, including 101 transactions per second (TPS) of blockchain online authentication, 57.6 TPS of secret voting services, 250 TPS of forgery prevention cases, 547 TPS of read transaction processing, and 149 TPS of write transaction processing, along with 100% ballot verification service, secret ballot authentication, and encryption accuracy. Functional and performance verifications were obtained through an external test certification agency in South Korea. Our design allows for blockchain authentication, non-forgery of ballot counting data, and secret voting through blockchain-based distributed ledger technology. In addition, we demonstrate how existing electronic voting systems can be easily converted to blockchain-based electronic voting systems by applying a blockchain-linked REST API. This study greatly contributes to enabling electronic voting using blockchain technology through cost reductions, information restoration, prevention of misrepresentation, and transparency enhancement for a variety of different forms of voting.

  • Cluster Expansion Method for Critical Node Problem Based on Contraction Mechanism in Sparse Graphs

    Zheng WANG  Yi DI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2022/02/24
      Vol:
    E105-D No:6
      Page(s):
    1135-1149

    The objective of critical nodes problem is to minimize pair-wise connectivity as a result of removing a specific number of nodes in the residual graph. From a mathematical modeling perspective, it comes the truth that the more the number of fragmented components and the evenly distributed of disconnected sub-graphs, the better the quality of the solution. Basing on this conclusion, we proposed a new Cluster Expansion Method for Critical Node Problem (CEMCNP), which on the one hand exploits a contraction mechanism to greedy simplify the complexity of sparse graph model, and on the other hand adopts an incremental cluster expansion approach in order to maintain the size of formed component within reasonable limitation. The proposed algorithm also relies heavily on the idea of multi-start iterative local search algorithm, whereas brings in a diversified late acceptance local search strategy to keep the balance between interleaving diversification and intensification in the process of neighborhood search. Extensive evaluations show that CEMCNP running on 35 of total 42 benchmark instances are superior to the outcome of KBV, while holding 3 previous best results out of the challenging instances. In addition, CEMCNP also demonstrates equivalent performance in comparison with the existing MANCNP and VPMS algorithms over 22 of total 42 graph models with fewer number of node exchange operations.

  • RMF-Net: Improving Object Detection with Multi-Scale Strategy

    Yanyan ZHANG  Meiling SHEN  Wensheng YANG  

     
    PAPER-Multimedia Systems for Communications

      Pubricized:
    2021/12/02
      Vol:
    E105-B No:5
      Page(s):
    675-683

    We propose a target detection network (RMF-Net) based on the multi-scale strategy to solve the problems of large differences in the detection scale and mutual occlusion, which result in inaccurate locations. A multi-layer feature fusion module and multi-expansion dilated convolution pyramid module were designed based on the ResNet-101 residual network. The ability of the network to express the multi-scale features of the target could be improved by combining the shallow and deep features of the target and expanding the receptive field of the network. Moreover, RoI Align pooling was introduced to reduce the low accuracy of the anchor frame caused by multiple quantizations for improved positioning accuracy. Finally, an AD-IoU loss function was designed, which can adaptively optimise the distance between the prediction box and real box by comprehensively considering the overlap rate, centre distance, and aspect ratio between the boxes and can improve the detection accuracy of the occlusion target. Ablation experiments on the RMF-Net model verified the effectiveness of each factor in improving the network detection accuracy. Comparative experiments were conducted on the Pascal VOC2007 and Pascal VOC2012 datasets with various target detection algorithms based on convolutional neural networks. The results demonstrated that RMF-Net exhibited strong scale adaptability at different occlusion rates. The detection accuracy reached 80.4% and 78.5% respectively.

  • An Efficient Resource Allocation Using Resource Abstraction for Optical Access Networks for 5G-RAN

    Seiji KOZAKI  Akiko NAGASAWA  Takeshi SUEHIRO  Kenichi NAKURA  Hiroshi MINENO  

     
    PAPER-Network Virtualization

      Pubricized:
    2021/11/22
      Vol:
    E105-B No:4
      Page(s):
    411-420

    In this paper, a novel method of resource abstraction and an abstracted-resource model for dynamic resource control in optical access networks are proposed. Based on this proposal, an implementation assuming application to 5G mobile fronthaul and backhaul is presented. Finally, an evaluation of the processing time for resource allocation using this method is performed using a software prototype of the control function. From the results of the evaluation, it is confirmed that the proposed method offers better characteristics than former approaches, and is suitable for dynamic resource control in 5G applications.

1-20hit(469hit)