The search functionality is under construction.

Keyword Search Result

[Keyword] wide-band(17hit)

1-17hit
  • An Underwater DOA Estimation Method under Unknown Acoustic Velocity with L-Shaped Array for Wide-Band Signals

    Gengxin NING  Yushen LIN  Shenjie JIANG  Jun ZHANG  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/03/09
      Vol:
    E105-A No:9
      Page(s):
    1289-1297

    The performance of conventional direction of arrival (DOA) methods is susceptible to the uncertainty of acoustic velocity in the underwater environment. To solve this problem, an underwater DOA estimation method with L-shaped array for wide-band signals under unknown acoustic velocity is proposed in this paper. The proposed method refers to the idea of incoherent signal subspace method and Root-MUSIC to obtain two sets of average roots corresponding to the subarray of the L-shaped array. And the geometric relationship between two vertical linear arrays is employed to derive the expression of DOA estimation with respect to the two average roots. The acoustic velocity variable in the DOA estimation expression can be eliminated in the proposed method. The simulation results demonstrate that the proposed method is more accurate and robust than other methods in an unknown acoustic velocity environment.

  • Surface Clutter Suppression with FDTD Recovery Signal for Microwave UWB Mammography Open Access

    Kazuki NORITAKE  Shouhei KIDERA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2019/07/17
      Vol:
    E103-C No:1
      Page(s):
    26-29

    Microwave mammography is a promising alternative to X-ray based imaging modalities, because of its small size, low cost, and cell-friendly exposure. More importantly, this modality enables the suppression of surface reflection clutter, which can be enhanced by introducing accurate surface shape estimations. However, near-field measurements can reduce the shape estimation accuracy, due to a mismatch between the reference and observed waveforms. To mitigate this problem, this study incorporates envelope-based shape estimation and finite-difference time-domain (FDTD)-based waveform correction with a fractional derivative adjustment. Numerical simulations based on realistic breast phantoms derived from magnetic resonance imaging (MRI) show that the proposed method significantly enhances the accuracy of breast surface imaging and the performance of surface clutter rejection.

  • A Wideband Asymmetric Digital Predistortion Architecture for 60 GHz Short Range Wireless Transmitters

    Kenji MIYANAGA  Masashi KOBAYASHI  Noriaki SAITO  Naganori SHIRAKATA  Koji TAKINAMI  

     
    PAPER

      Vol:
    E99-C No:10
      Page(s):
    1190-1199

    This paper presents a wideband digital predistortion (DPD) architecture suitable for wideband wireless systems, such as IEEE 802.11ad/WiGig, where low oversampling ratio of the digital-to-analog converter (DAC) is a bottleneck for available linearization bandwidth. In order to overcome the bandwidth limitation in the conventional DPD, the proposed DPD introduces a complex coefficient filter in the DPD signal processing, which enables it to achieve asymmetric linearization. This approach effectively suppresses one side of adjacent channel leakages with twice the bandwidth as compared to the conventional DPD. The concept is verified through system simulation and measurements. Using a scaled model of a 2 GHz RF carrier frequency, the measurement shows a 4.2 dB advantage over the conventional DPD in terms of adjacent channel leakage.

  • A 1µs Settling Time Fully Digital AGC System with a 1GHz-Bandwidth Variable Gain Amplifier for WiGig/IEEE802.11ad Multi-Gigabit Wireless Transceivers

    Ryo KITAMURA  Koichiro TANAKA  Tadashi MORITA  Takayuki TSUKIZAWA  Koji TAKINAMI  Noriaki SAITO  

     
    PAPER

      Vol:
    E96-C No:10
      Page(s):
    1301-1310

    This paper presents an automatic gain control (AGC) system suitable for 60GHz direct conversion receivers. By using a two step gain control algorithm with high-pass filter cutoff frequency switching, the proposed AGC system realizes fast settling time and wide dynamic range simultaneously. The paper also discusses wide-bandwidth variable gain amplifier (VGA) design. By introducing digitally-controlled resistors and gain flattening capacitors, the proposed VGA realizes wide gain range while compensating gain variations due to parasitic capacitance of MOS switches. The AGC system is implemented in a transceiver chipset where RFIC and BBIC are fabricated in 90nm CMOS and 40nm CMOS respectively. The measurement shows excellent dynamic range of 47dB with +/-1dB gain accuracy within 1µs settling time, which satisfies the stringent requirements of the IEEE802.11ad standard.

  • Automatic Clustering Collaborative Compressed Spectrum Sensing in Wide-Band Heterogeneous Cognitive Radio Networks

    Zhenghao ZHANG  Husheng LI  Changxing PEI  Qi ZENG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E94-B No:12
      Page(s):
    3569-3578

    There are two major challenges in wide-band spectrum sensing in a heterogenous spectrum environment. One is the spectrum acquisition in the wide-band scenario due to limited sampling capability; the other is how to collaborate in a heterogenous spectrum environment. Compressed spectrum sensing is a promising technology for wide-band signal acquisition but it requires effective collaboration to combat noise. However, most collaboration methods assume that all the secondary users share the same occupancy of primary users, which is invalid in a heterogenous spectrum environment where secondary users at different locations may be affected by different primary users. In this paper, we propose an automatic clustering collaborative compressed spectrum sensing (ACCSS) algorithm. A hierarchy probabilistic model is proposed to represent the compressed reconstruction procedure, and Dirichlet process mixed model is introduced to cluster the compressed measurements. Cluster membership estimation and compressed spectrum reconstruction are jointly implemented in the fusion center. Based on the probabilistic model, the compressed measurements from the same cluster can be effectively fused and used to jointly reconstruct the corresponding primary user's spectrum signal. Consequently, the spectrum occupancy status of each primary user can be attained. Numerical simulation results demonstrate that the proposed ACCSS algorithm can effectively estimate the cluster membership of each secondary user and improve compressed spectrum sensing performance under low signal-to-noise ratio.

  • A 65-nm CMOS Fully Integrated Shock-Wave Antenna Array with On-Chip Jitter and Pulse-Delay Adjustment for Millimeter-Wave Active Imaging Application

    Nguyen Ngoc MAI KHANH  Masahiro SASAKI  Kunihiro ASADA  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E94-A No:12
      Page(s):
    2554-2562

    This paper presents a 65-nm CMOS 8-antenna array transmitter operating in 117–130-GHz range for short range and portable millimeter-wave (mm-wave) active imaging applications. Each antenna element is a new on-chip antenna located on the top metal. By using on-chip transformer, pulse output of each resistor-less mm-wave pulse generators (PG) are sent to each integrated antenna. To adjust pulse delays for the purpose of pulse beam-forming, a 7-bit digitally programmable delay circuit (DPDC) is added to each of PGs. Moreover, in order to dynamically adjust pulse delays among eight SW's outputs, we implemented on-chip jitter and relative skew measuring circuit with 20-bit digital output to achieve cumulative distribution (CDF) and probability density (PDF) functions from which DPDC's input codes are decided to align eight antenna's output pulses. Two measured radiation peaks after relative skew alignment are obtained at (θ; φ) angles of (-56; 0) and (+57; 0). Measurement results shows that beam-forming angles of the fully integrated antenna array can be adjusted by digital input codes and by the on-chip skew adjustment circuit for active imaging applications.

  • Optimum Threshold for Indoor UWB ToA-Based Ranging

    Marzieh DASHTI  Mir GHORAISHI  Katsuyuki HANEDA  Jun-ichi TAKADA  Kenichi TAKIZAWA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E94-A No:10
      Page(s):
    2002-2012

    This paper proposes a method for setting the threshold for ultra-wide-band (UWB) threshold-based ranging in indoor scenarios. The optimum threshold is derived based on the full analysis of the ranging error, which is equivalent to the probability of correct detection of first arriving signal in time-based ranging techniques. It is shown that the probability of correct detection is a function of first arriving signal, which has variations with two independent distributions. On the one hand, the first arriving signal varies in different positions with the same range due to multipath interference and on the other, it is a function of distance due to free space path-loss. These two distributions are considered in the derivation of the ranging error, based on which the optimum threshold is obtained. A practical method to derive this threshold is introduced based on the standard channel model. Extensive Monte Carlo simulations, ray-tracing simulations and ranging measurements confirm the analysis and the superior performance of the proposed threshold scheme.

  • An Imaging Algorithm of a Target with Arbitrary Motion for Ultra Wide-Band Radar with a Small Number of Antennas

    Yuji MATSUKI  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:3
      Page(s):
    742-749

    UWB (ultra wide-band) pulse radar is a promising candidate for surveillance systems. The fast SEABED (Shape Estimation Algorithm based on BST and Extraction of Directly scattered waves) imaging algorithm is deployed in the application of UWB pulse radar in fields that require real-time operations. However, since the SEABED algorithm uses signals received at multiple locations, this method either needs to scan antennas or to install many antennas. Such systems are inevitably costly and unrealistic for applications such as surveillance. To overcome this problem, a revised SEABED algorithm that estimates unknown target shape based on target motion using only a pair of fixed antennas was developed. However, the method cannot be used when the target moves arbitrarily because it assumes the target motion is parallel to the baseline of the pair of antennas. In this paper, we propose a new UWB radar imaging algorithm that is applicable even for targets with arbitrary motion. The proposed method introduces another antenna which is added to the pair of antennas used in the revised SEABED, and estimates unknown target motion based on the target surface using the three antennas. Next, the proposed method applies the SEABED imaging algorithm to the estimated motion and obtains the target image. Some numerical simulations establishes that the proposed method can accurately estimate the target shape even under severe conditions.

  • Preliminary Study of Performance Evaluation of Adaptive Scan with Wide-Band Noise Modulation for Spaceborne Rain Radar Based on Simulation

    Toyoshi SHIMOMAI  Kentaro ADACHI  Toshiaki KOZU  

     
    PAPER-Sensing

      Vol:
    E94-B No:3
      Page(s):
    786-792

    Wide-band noise modulation is added to the adaptive scan technique for spaceborne rain radar. The performance of this technique is studied by simulation using one month of TRMM (Tropical Rainfall Measuring Mission) Precipitation Radar (PR) data from the viewpoints of improving the sensitivity and reducing power consumption. The results show that the adaptive scan technique with wide-band noise modulation uses about 25% less energy than the conventional scanning technique. The adaptive scan using wide-band noise modulation is more effective than that using a normal pulse for localized rainy areas. Surface data as well as rainfall data can be obtained by using the adaptive scan using wide-band noise modulation.

  • Dispersion, High-Frequency and Power Characteristics of AlN/GaN Metal Insulator Semiconductor Field Effect Transistors with in-situ MOCVD Deposited Si3N4

    Sanghyun SEO  Eunjung CHO  Giorgi AROSHVILI  Chong JIN  Dimitris PAVLIDIS  Laurence CONSIDINE  

     
    PAPER-GaN-based Devices

      Vol:
    E93-C No:8
      Page(s):
    1245-1250

    The paper presents a systematic study of in-situ passivated AlN/GaN Metal Insulator Semiconductor Field Effect Transistors (MISFETs) with submicron gates. DC, high frequency small signal, large signal and low frequency dispersion effects are reported. The DC characteristics are analyzed in conjunction with the power performance of the device at high frequencies. Studies of the low frequency characteristics are presented and the results are compared with those of AlGaN/GaN High Electron Mobility Transistors (HEMTs). Small signal measurements showed a current gain cutoff frequency and maximum oscillation frequency of 49.9 GHz and 102.3 GHz respectively. The overall characteristics of the device include a peak current density of 335 mA/mm, peak extrinsic transconductance of 130 mS/mm, a maximum output power density of 533 mW/mm with peak power added efficiency (P.A.E.) of 41.3% and linear gain of 17 dB. The maximum frequency dispersion of transconductance and output resistance of the fabricated MISFETs is 20% and 21% respectively.

  • A 3-D Packaging Technology with Highly-Parallel Memory/Logic Interconnect

    Yoichiro KURITA  Koji SOEJIMA  Katsumi KIKUCHI  Masatake TAKAHASHI  Masamoto TAGO  Masahiro KOIKE  Koujirou SHIBUYA  Shintaro YAMAMICHI  Masaya KAWANO  

     
    PAPER-Electronic Components

      Vol:
    E92-C No:12
      Page(s):
    1512-1522

    A three-dimensional semiconductor package structure with inter-chip connections was developed for broadband data transfer and low latency electrical communication between a high-capacity memory and a logic device interconnected by a feedthrough interposer (FTI) featuring a 10 µm scale fine-wiring pattern and ultra-fine-pitch through vias. This technology features co-existence of the wide-band memory accessibility of a system-on-chip (SoC) and the capability of memory capacity increasing of a system-in-package (SiP) that is made possible by the individual fabrication of memory and logic on independent chips. This technology can improve performance due to memory band widening and a reduction in the power consumed in inter-chip communications. This paper describes the concept, structure, process, and experimental results of prototypes of this package, called SMAFTI (SMAart chip connection with FeedThrough Interposer). This paper also reports the results of the fundamental reliability test of this novel inter-chip connection structure and board-level interconnectivity tests.

  • Design of First-Order Differentiator and Integrator Using Bilinear Transformations

    Lin-Chuan TSAI  Kuo-Chih CHU  

     
    LETTER-Digital Signal Processing

      Vol:
    E92-A No:3
      Page(s):
    928-931

    Simple and accurate formulations are employed to represent discrete-time infinite impulse response (IIR) processes of first-order differentiator and integrator. These formulations allow them to be eligible for wide-band applications. Both first-order differentiator and integrator have an almost linear phase. The new differentiator has an error of less than 1% for the range 0-0.8π of normalized frequency and the new integrator has an error of less than 1.1% for the range 0-0.8π of normalized frequency.

  • A Band Extension Technique for G.711 Speech Using Steganography

    Naofumi AOKI  

     
    LETTER-Network

      Vol:
    E89-B No:6
      Page(s):
    1896-1898

    This study investigates a band extension technique for speech data encoded with G.711, the most common codec for digital speech communications system such as VoIP. The proposed technique employs steganography for the transmission of the side information required for the band extension. Due to the steganography, the proposed technique is able to enhance the speech quality without an increase of the amount of data transmission. From the results of a subjective experiment, it is indicated that the proposed technique may potentially be useful for improving the speech quality, compared with the conventional technique.

  • Design of Optical Video Transmission System for Fiber to the Home Employing Super Wide-Band FM Modulation Scheme

    Yoshikazu ISHII  Katsuya ODA  Kazuhiro NOJIMA  Hiroaki ASANO  Hidehiko NEGISHI  Seiho KITAJI  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E84-B No:11
      Page(s):
    2915-2923

    In this paper, we present a design for an optical video transmission system employing a super wide-band FM modulation scheme. We focus on the design of optical transmitters and receivers, especially a wide-band electrical-to-optical converter and optical-to-electrical converter. With this system, it is important to develop optical and microwave devices which have a wide frequency response combined with flat group delay characteristics in order to improve the quality of the video signals after transmission. We also analyze theoretically the hybrid transmission capacity of AM analog video signals and 64QAM signals for digital video and data, and show the FM modulation parameters needed to realize high quality transmission. An experimental evaluation shows that our designed optical transmitter and receiver achieve high quality for the various channel plans for AM/64QAM hybrid transmission. The system has high received optical sensitivity and a wide optical dynamic range, allowing it to distribute analog video, digital video, and Internet data to many users over a wide area.

  • Enhancement of Band-Edge Gain in Radial Line Slot Antennas Using the Power Divider--A Wide-Band Radial Line Slot Antenna--

    Tetsuya YAMAMOTO  Masaharu TAKAHASHI  Makoto ANDO  Naohisa GOTO  

     
    PAPER-Antennas and Propagation

      Vol:
    E78-B No:3
      Page(s):
    398-406

    A Radial Line Slot Antenna (RLSA) is a planar antenna for DBS reception. It is a kind of slotted waveguide arrays. The conductor loss is so small that high efficiency is expected irrespective of the aperture diameter. On the other hand, since a RLSA utilizes the traveling waves, the frequency bandwidth is limited by the long line effect, particularly for a larger antenna. A new Wide-Band RLSA (WB-RLSA) is proposed which halves the waveguide length and widens the frequency bandwidth. This paper presents the design and experimental results of a model antenna. A gain of 33.7dBi is measured at the edge of 800MHz bandwidth and its high potential is demonstrated.

  • 200-kHz Wide-Band Underwater Ultrasonic Transducers for Color Video Picture Transmission

    Takeshi INOUE  Noriko WATARI  Akira KAMEYAMA  Michiya SUZUKI  Tetsuo MIYAMA  

     
    PAPER-Ultrasonics

      Vol:
    E77-A No:7
      Page(s):
    1185-1193

    Wide-band, low-ripple underwater transducers with high-power acoustic radiation capability have been designed on the basis of multiple-mode filter synthesis theory. They are composed of triple acoustic matching plates and double backing plates with optimized specific acoustic impedances,besides piezoelectric ceramic elements. One of the backing plates employs a Fe damping-alloy to suppress unwanted response peaks in the frequency range above the passband region. Two 33 array transducers were fabricated, each with a center frequency of 200 kHz, one as a transmitter and the other as a receiver. The two transducers show high-sensitivity, low-ripple and wide-band transmitting and receiving responses. Then, the transducers were applied in a color video picture digital transmission system.Clear color video pictures, composed of 256240 pixels, were successfully received within one second.

  • Bit Error Rate Performances of Orthogonal Multicarrier Modulation Radio Transmission Systems

    Minoru OKADA  Shinsuke HARA  Norihiko MORINAGA  

     
    PAPER

      Vol:
    E76-B No:2
      Page(s):
    113-119

    A multicarrier modulation is considered as an effective technique in high speed digital transmission under the multipath fading. In this paper, we theoretically analyze the bit error rate (BER) performance of the multicarrier modulation/differential detection scheme, and show the trade-offs between the BERs and the number of carriers or the guard period to clarify the optimum values to minimize the BER in the number of carriers and the guard period.