Miguel LÓPEZ-BENÍTEZ Fernando CASADEVALL
Cognitive Radio (CR) is aimed at increasing the efficiency of spectrum utilization by allowing unlicensed users to access, in an opportunistic and non-interfering manner, some licensed bands temporarily and/or spatially unoccupied by the licensed users. The analysis of CR systems usually requires the spectral activity of the licensed system to be represented and characterized in a simple and tractable, yet accurate manner, which is accomplished by means of spectrum models. In order to guarantee the realism and accuracy of such models, the use of empirical spectrum occupancy data is essential. In this context, this paper explains the complete process of spectrum modeling, from the realization of field measurements to the obtainment of the final validated model, and highlights the main relevant aspects to be taken into account when developing spectrum usage models for their application in the context of the CR technology.
Dipankar RAYCHAUDHURI Akash BAID
This paper presents the design and proof-of-concept validation of a novel network-assisted spectrum coordination (NASCOR) service for improved radio coexistence in future shared spectrum bands. The basic idea is to create an overlay network service for dissemination of spectrum usage information between otherwise independent radio devices and systems, enabling them to implement decentralized spectrum coexistence policies that reduce interference and improve spectrum packing efficiency. The proposed method is applicable to unlicensed band and shared spectrum systems in general (including femtocells), but is particularly relevant to emerging TV white spaces and cognitive radio systems which are still in need of scalable and accurate solutions for both primary-to-secondary and secondary-to-secondary coordination. Key challenges in enabling a network layer spectrum coordination service are discussed along with the description of our system architecture and a detailed case-study for a specific example of spectrum coordination: client-AP association optimization in dense networks. Performance gains are evaluated through large-scale simulations with multiple overlapping networks, each consisting of 15-35 access points and 50-250 clients in a 0.5×0.5 sq.km. urban setting. Results show an average of 150% improvement in random deployments and upto 7× improvements in clustered deployments for the least-performing client throughputs with modest reductions in the mean client throughputs.
This paper summarizes the current status of regulations, standardization efforts and trials around the world regarding white space (WS) communications, especially television band WS (TVWS). After defining WS communication systems configurations and function and the categories of white space database, the TVWS regulations in United States, United Kingdom, and Japan are summarized. Then regarding status of standardization for TVWS devices, IEEE 802 and IEEE 1900 standards are summarized. Finally ongoing pilot projects and trials of WS communications in the world are summarized, and trends and future direction of research on WS communication systems are summarized.
Ruyuan ZHANG Yafeng ZHAN Yukui PEI Jianhua LU
Cooperative spectrum sensing is an effective approach that utilizes spatial diversity gain to improve detection performance. Most studies assume that the background noise is exactly known. However, this is not realistic because of noise uncertainty which will significantly degrade the performance. A novel weighted hard combination algorithm with two thresholds is proposed by dividing the whole range of the local test statistic into three regions called the presence, uncertainty and absence regions, instead of the conventional two regions. The final decision is made by weighted combination at the common receiver. The key innovation is the full utilization of the information contained in the uncertainty region. It is worth pointing out that the weight coefficient and the local target false alarm probability, which determines the two thresholds, are also optimized to minimize the total error rate. Numerical results show this algorithm can significantly improve the detection performance, and is more robust to noise uncertainty than the existing algorithms. Furthermore, the performance of this algorithm is not sensitive to the local target false alarm probability at low SNR. Under sufficiently high SNR condition, this algorithm reduces to the improved one-out-of-N rule. As noise uncertainty is unavoidable, this algorithm is highly practical.
Fereidoun H. PANAHI Tomoaki OHTSUKI
In a cognitive radio (CR) network, the channel sensing scheme used to detect the existence of a primary user (PU) directly affects the performances of both CR and PU. However, in practical systems, the CR is prone to sensing errors due to the inefficiency of the sensing scheme. This may yield primary user interference and low system performance. In this paper, we present a learning-based scheme for channel sensing in CR networks. Specifically, we formulate the channel sensing problem as a partially observable Markov decision process (POMDP), where the most likely channel state is derived by a learning process called Fuzzy Q-Learning (FQL). The optimal policy is derived by solving the problem. Simulation results show the effectiveness and efficiency of our proposed scheme.
Kanshiro KASHIKI I-Te LIN Tomoki SADA Toshihiko KOMINE Shingo WATANABE
This paper describes an analytical study of performance of a proposed signal detection scheme that will allow coexistence of an additional radio communication system (generally, secondary system) in the service area where the existing communication system (primary system) is operated. Its performance characteristics are derived by an analytical method based on stochastic theory, which is subsequently validated by software simulation. The main purpose of the detection scheme is to protect the primary system from the secondary system. In such a situation, the signals of the primary system and secondary system may be simultaneously received in the signal detector. One application of such a scheme is D-to-D (Device-to-Device) communication, whose system concept including the detection scheme is briefly introduced. For improved secondary signal detection, we propose the signal cancellation method of the primary system and the feature detection method of the secondary system signal. We evaluate the performance characteristics of the detection scheme in terms of “probability of correct detection”. We reveal that an undesired random component is produced in the feature detection procedure when two different signals are simultaneously received, which degrades the detection performance. Such undesired component is included in the analytical equations. We also clarify that the cancellation scheme improves the performance, when the power ratio of the primary signal to secondary signal is higher than 20-22dB.
Ha-Nguyen TRAN Yohannes D. ALEMSEGED Hiroshi HARADA
Spectrum sensing is one of the methods to identify available white spaces for secondary usage which was specified by the regulators. However, signal quality to be sensed can plunge to a very low signal-to-noise-ratio due to signal propagation and hence readings from individual sensors will be unreliable. Distributed sensing by the cooperation of multiple sensors is one way to cope with this problem because the diversity gain due to the combining effect of data captured at different position will assist in detecting signals that might otherwise not be detected by a single sensor. In effect, the probability of detection can be improved. We have implemented a distributed sensing system to evaluate the performance of different cooperative sensing algorithms. In this paper we describe our implementation and measurement experience which include the system design, specification of the system, measurement method, the issues and solutions. This paper also confirms the performance enhancement offered by distributed sensing algorithms, and describes several ideas for further enhancement of the sensing quality.
Chunyi SONG Takeshi MATSUMURA Hiroshi HARADA
Some key challenges remain to be overcome before spectrum sensing can be widely used to identify spectrum opportunities in the TV bands. To fulfill the strict sensing requirement specified by FCC, a comprehensive sensing algorithm, which produces high SNR gain and maintains sensing robustness under complex noise conditions, needs to be implemented. In addition, carefully designed physical features and improvement on cost performance ratio are also essential if a prototype is to be commercialized. To the best of our knowledge, no success has ever been announced in developing a sensing prototype that fulfills both FCC sensing requirement and the above mentioned features. In this paper, we introduce a recently developed sensing prototype for Japanese digital TV signals of ISDB-T. The prototype operates in the Japanese UHF TV band of 470-770MHz and can reliably identify presence/absence of an ISDB-T signal at the level of -114dBm in a 6MHz channel. Moreover, it has constrained size and weight, and is capable of accurately measuring power of an ISDB-T signal at an extremely low level. Efforts on reducing cost have also been made by avoiding the use of electronic components/devices of high price. Both laboratory and field tests are performed to evaluate its sensing performance and power measurement capability. In the laboratory test, sensing performance under conditions of adjacent channel interference and frequency offset, and power measurement accuracy, are checked. In field tests, the prototype is attached in a vehicle and is checked for its capability to identify the presence of purposely broadcasted ISDB-T signals at some fixed locations and also during movement of the vehicle.
Arthur D.D. LIMA Carlos A. BARROS Luiz Felipe Q. SILVEIRA Samuel XAVIER-DE-SOUZA Carlos A. VALDERRAMA
The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.
In this paper, we focus on a centralized spectrum access strategy in a cognitive radio network, in which a single licensed spectrum with one primary user (PU) and several secondary users (SUs) (multiple input streams) are considered. We assume the spectrum can be divided into multiple channels and the packets from variable SUs can arrive at the system simultaneously. Taking into account the priority of the PU, we suppose that one PU packet can occupy the whole licensed spectrum, while one SU packet will occupy only one of the channels split from the licensed spectrum when that channel is not used. Moreover, in order to reduce the blocking ratio of the SUs, a buffer with finite capacity for the SUs is set. Regarding the packet arrivals from different SUs as multiple input streams, we build a two-dimensional Markov chain model based on the phase of the licensed spectrum and the number of SU packets in the buffer. Then we give the transition probability matrix for the Markov chain. Additionally, we analyze the system model in steady state and derive some important performance measures for the SUs, such as the average queue length in the buffer, the throughput and the blocking ratio. With the trade-off between different performance measures, we construct a net benefit function. At last, we provide numerical results to show the change trends of the performance measures with respect to the capacity of the SU buffer under different network conditions, and optimize the capacity of the SU buffer accordingly.
Noriyuki YAGINUMA Masahiro UMEHIRA Hiroshi HARADA
In cognitive radio systems using TV white space, it is desirable to secure a control channel to exchange the wireless network control information and to secure minimum frequency resource for secondary user communications if TV white space is unavailable. In order to satisfy these requirements, this paper proposes guard band utilization, which aggregates the multiple guard bands between digital TV signals and uses them for a control channel and/or a communication channel. To investigate the feasibility of the proposed scheme, this paper evaluates the performance degradation of the digital TV signals when the guard band is used. Furthermore, it discusses the permissible transmitting power and occupied bandwidth of the guard band signals to avoid the harmful interference to the digital TV signals.
Tsuyoshi SHIMOMURA Teppei OYAMA Hiroyuki SEKI
Television white spaces (TVWS) are locally and/or temporally unused portions of TV bands. After TVWS regulations were passed in the USA, more and more regulators have been considering efficient use of TVWS. Under the condition that the primary user, i.e., terrestrial TV broadcasting system, is not interfered, various secondary users (SUs) may be deployed in TVWS. In Japan, the TVWS regulations started with broadcast-type SUs and small-area broadcasting systems, followed by voice radio. This paper aims to provide useful insights for more efficient utilization of TVWS as one of the options to meet the continuously increasing demand for wireless bandwidth. TVWS availability in Japan is analyzed using graphs and maps. As per the regulations in Japan, for TV broadcasting service, a protection contour is defined to be 51dBµV/m, while the interference contour for SU is defined to be 12.3dBµV/m. We estimate TVWS availability using these two regulation parameters and the minimum separation distances calculated on the basis of the ITU-R P.1546 propagation models. Moreover, we investigate and explain the effect of two important factors on TVWS availability. One is the measures to avoid adjacent channel interference, while the other is whether the SU has client devices with interference ranges beyond the interference area of the master device. Furthermore, possible options to increase available TVWS channels are discussed.
Nhan NGUYEN-THANH Anh T. PHAM Van-Tam NGUYEN
Designing a medium access control (MAC) protocol is a key for implementing any practical wireless network. In general, a MAC protocol is responsible for coordinating users in accessing spectrum resources. Given that a user in cognitive radio(CR) networks do not have priority in accessing spectrum resources, MAC protocols have to perform dynamic spectrum access (DSA) functions, including spectrum sensing, spectrum access, spectrum allocation, spectrum sharing and spectrum mobility, beside conventional control procedure. As a result, designing MAC protocols for CR networks requires more complicated consideration than that needed for conventional/primary wireless network. In this paper, we focus on two major perspectives related to the design of a CR-MAC protocol: dynamic spectrum access functions and network infrastructure. Five DSA functions are reviewed from the point of view of MAC protocol design. In addition, some important factors related to the infrastructure of a CR network including network architecture, control channel management, the number of radios in the CR device and the number of transmission data channels are also discussed. The remaining challenges and open research issues are addressed for future research to aim at obtaining practical CR-MAC protocols.
Kazuya SUZUKI Kentaro SONODA Nobuyuki TOMIZAWA Yutaka YAKUWA Terutaka UCHIDA Yuta HIGUCHI Toshio TONOUCHI Hideyuki SHIMONISHI
The paper presents a survey on OpenFlow related technologies that have been proposed as a means for researchers, network service creators, and others to easily design, test, and deploy their innovative ideas in experimental or production networks to accelerate research activities on network technologies. Rather than having programmability within each network node, separated OpenFlow controllers provide network control through pluggable software modules; thus, it is easy to develop new network control functions in executable form and test them in production networks. The emergence of OpenFlow has started various research activities. The paper surveys these activities and their results.
Kazuhiro KIMURA Hiroyuki MIYAZAKI Tatsunori OBARA Fumiyuki ADACHI
2-time slot cooperative relay can be used to increase the cell-edge throughput. Adaptive data modulation further improves the throughput. In this paper, we introduce adaptive modulation to single-carrier (SC) cooperative decode-and-forward (DF) relay. The best modulation combination for mobile-terminal (MT)-relay station (RS) and RS-base station (BS) links is determined for the given local average signal-to-noise power ratios (SNRs) of MT-BS, MT-RS and RS-BS links. According to the modulation combination, the ratio of time slot length of the MT-RS link (first time slot) and the RS-BS link (second time slot) is changed. It is shown by computer simulation that the use of adaptive modulation can achieve higher throughput than fixed modulation and reduces by about 9dB the required normalized total transmit SNR for a 10%-outage throughput of 0.8 bps/Hz compared to direct transmission.
Jinxiao ZHU Yulong SHEN Xiaohong JIANG Osamu TAKAHASHI Norio SHIRATORI
The fading channel model is seen as an important approach that can efficiently capture the basic time-varying properties of wireless channels, while physical layer security is a promising approach to providing a strong form of security. This paper focuses on the fundamental performance study of applying physical layer security to achieve secure and reliable information transmission over the fading wire-tap channel. For the practical scenario where the main channel is correlated with the eavesdropper channel but only the real time channel state information (CSI) of the main channel is known at the transmitter, we conduct a comprehensive study on the fundamental performance limits of this system by theoretically modeling its secrecy capacity, transmission outage probability and secrecy outage probability. With the help of these theoretical models, we then explore the inherent performance tradeoffs under fading wire-tap channel and also the potential impact of channel correlation on such tradeoffs.
Shinichi KAWAGUCHI Toshiaki YACHI
As the use of information technology (IT) is explosively spreading, reducing the power consumption of IT devices such as servers has become an important social challenge. Nevertheless, while the efficiency of the power supply modules integrated into computers has recently seen significant improvements, their overall efficiency generally depends on load rates. This is especially true under low power load conditions, where it is known that efficiency decreases drastically. Recently, power-saving techniques that work by controlling the power module configuration under low power load conditions have been considered. Based on such techniques, further efficiency improvements can be expected by an adaptive efficiency controls which interlocks the real-time data processing load status with the power supply configuration control. In this study, the performance counters built into the processor of a computer are used to predict power load variations and an equation that predicts the power consumption levels is defined. In a server application experiment utilizing prototype computer hardware and regression analysis, it is validated that the equation could precisely predict processor power consumption. The evaluation shows that significant power supply efficiency improvements could be achieved especially for light load condition. The dependency of the efficiency improvement and operation period is investigated and preferable time scale of the adaptive control is proposed.
Yangbae CHUN Seongwook PARK Jonghoon KIM Jiseong KIM Hongseok KIM Joungho KIM Nam KIM Seungyoung AHN
We present the concept of an on-line electric vehicle (OLEV) and its wireless power transfer mechanism and analyze the electromagnetic compatibility characteristics. As magnetic fields transfer 100kW of power to the vehicle, reduction of electromagnetic field (EMF) noise is a critical issue for protection of the human body. Also, with respect to electromagnetic interference (EMI) noise, a proper measurement method has not yet been established for this low frequency high power system. In this paper, low frequency magnetic field shielding methods and application of the shields to the OLEV system are presented. Furthermore, a standard low frequency magnetic field measurement is suggested as an EMI test.
Flavia GRASSI Giordano SPADACINI Sergio A. PIGNARI
In this work, a measurement-based procedure aimed at deriving a behavioral model of Bulk Current Injection (BCI) probes clamped onto multi-wire cable bundles is proposed. The procedure utilizes the measurement data obtained by mounting the probe onto the calibration jig for model-parameters extraction, and 2D electromagnetic simulations to adapt such parameters to the specific characteristics of the cable bundle under analysis. Outcome of the analysis is a behavioral model which can be easily implemented into the SPICE environment. Without loss of generality, the proposed model is here used to predict the radio-frequency noise stressing the terminal units of a two-wire harness. Model accuracy in predicting the common and differential mode voltages induced by BCI at the line terminals is assessed by EM modeling and simulation of the involved injection setup by the commercial software CST Microwave Studio.
Masamichi FUJIWARA Ken-Ichi SUZUKI Naoto YOSHIMOTO
Multi-stage splitter configurations are often utilized in passive optical network (PON) systems to effectively accommodate widely-dispersed users. This paper introduces two types of more effective user accommodation approaches that place bidirectional optical amplifiers in several branches of the splitter inside the central office (CO); it allows a single optical line terminal (OLT) to support the coexistence of normal- and extended-distance areas and also the sharing by large numbers of optical network units (ONUs). To ease the issue of amplified spontaneous emission (ASE) noise, which is inherent in these system configurations, we propose to use a semiconductor optical amplifier (SOA)-based burst-mode optical amplifier with a fast automatic level control (ALC) circuit for upstream amplification.
Yu TIAN Linhua MA Bo SONG Hong TANG Song ZHANG Xing HU
Much work in cooperative communication has been done from the perspective of the physical and network layers. However, the exact impact of signal error rate performance on cooperative routing discovery still remains unclear in multihop ad hoc networks. In this paper, we show the symbol error rate (SER) performance improvement obtained from cooperative commutation, and examine how to incorporate the factor of SER into the distributed routing discovery scheme called DGCR (Dynamic Geographic Cooperative Routing). For a single cooperative communication hop, we present two types of metric to specify the degree that one node is suitable for becoming the relay node. One metric is the potential of a node to relay with optimal SER performance. The other metric is the distance of a node to the straight line that passes through the last forwarding node and the destination. Based on location knowledge and contention scheme, we combine the two metrics into a composite metric to choose the relay node. The forwarding node is chosen dynamically according to the positions of the actual relay node and the destination. Simulation results show that our approach outperforms non-cooperative geographic routing significantly in terms of symbol error rate, and that DGCR's SER performance is better than traditional geographic cooperative routing with slight path length increase.
This paper proposes a new optimization problem and several implementation algorithms for energy-efficient clouds where energy efficiency is measured by the number of physical machines that can be removed from operation and turned off. The optimization problem is formulated is such a way that solutions are considered favorable not only when the number of migrations is minimized but also when the resulting layout has more free physical machines which can therefore be turned off to save electricity.
Ken HIRAGA Kazumitsu SAKAMOTO Kentaro NISHIMORI Tomohiro SEKI Tadao NAKAGAWA Kazuhiro UEHARA
One of the procedures for increasing the number of multi-input and multi-output (MIMO) branches without increasing the computational cost for MIMO detection or multiplexing is to exploit parallel transmissions by using polarization multiplexing. In this paper the effectiveness of using polarization multiplexing is confirmed under the existence of polarization rotation, which is inevitably present in short-range multi-input and multi-output (SR-MIMO) channels with planar array antennas. It is confirmed that 8×8 SR-MIMO transmission system with polarization multiplexing has 60bit/s/Hz of channel capacity. This paper also shows a model for theoretical cross polarization discrimination (XPD) degradation, which is useful to calculate XPD degradations on diagonal paths.
Miao ZHANG Jiro HIROKAWA Makoto ANDO
As a promising lamination-loss-free fabrication technique, diffusion bonding of etched thin metal plates is used to realize double-layer waveguide slot antennas. Alternating-phase feed is adopted in this paper to reduce the number of laminated plates to simplify fabrication as well as to reduce cost. A 20 × 20-element double-layer waveguide slot antenna with a bottom partially-corporate feed circuit is designed for 39GHz band operation as an example. The adjacent radiating waveguides as well as the 2 × 2 sub-arrays fed in an alternating-phase manner eliminate the need for complete electrical contact in the top layer. However, the feed circuit in the bottom layer has to be completely diffusion-bonded. These two layers are simply assembled by screws. An antenna laminated by only diffusion bonding is also fabricated and evaluated for comparison. The comparison proved that the simply fabricated antenna is comparable in performance to the fully diffusion-bonded one.
Tetsuya YAMAMOTO Fumiyuki ADACHI
Orthogonal frequency division multiplexing (OFDM) has been attracting much attention because of its robustness against frequency selective fading. Instead of well-known cyclic prefix (CP) insertion, known training sequence (TS) insertion can be used for OFDM block transmission (called TS-OFDM). In this paper, we propose a new receiver design, which can obtain the frequency diversity gain through the use of frequency-domain equalization (FDE) for TS-OFDM. A conditional bit error rate (BER) analysis of the proposed FDE is presented. The average BER performance of the TS-OFDM signal transmission in a frequency-selective Rayleigh fading channel is evaluated by the Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation. Numerical and computer simulation results show the proposed TS-OFDM with FDE improves BER and throughput performance of TS-OFDM compared to the conventional TS-OFDM receiver due to the frequency diversity gain. It is also shown that the proposed TS-OFDM with FDE is more robust against imperfect channel estimation than the conventional TS-OFDM receiver.
Xiaoxue YU Yasushi YAMAO Motoharu MATSUURA
Radio over Fiber (RoF) is a promising technology that is suitable for broadband wireless access systems to cover in-building areas and outdoor dead-spots. However, one issue in RoF transmission that should be considered is the nonlinear distortion caused by Electrical/Optical (E/O) converters. Multicarrier RF (Radio Frequency) signal formats such as Orthogonal Frequency Division Multiplexing (OFDM), which are commonly employed in broadband wireless communications, are weak against nonlinearities. To enable the linear transmission of OFDM signal in RoF channel, we propose to employ the Envelop Pulse Width Modulation (EPWM) transmission scheme for RoF channel. Two commonly used E/O converters, Mach-Zehnder modulator and direct-modulation of Distributed Feedback Laser Diode (DFB LD), are employed to validate the proposal. Based on the measured nonlinearities of the E/O converters, they are mathematically modeled and their transmission performance are analyzed. A modified Rapp model is developed for the modeling of the DFB LD. Through simulations and experiments, the proposed scheme is shown to be effective in dealing with the nonlinearities of the E/O converters.
Yaser FAEDFAR Mohd Fadzli Mohd SALLEH
In this study, a new method for Decode-Distributed Beamforming (D-DB) relaying is proposed. Each relay node decodes the source symbol by maximum likelihood detection. The detected symbol is entered into the stored Quantized Equal-gain (QE) codebook, where the label of the phase region is provided by a feedback link from the destination node. Therefore, the proposed relay network forms a Decode-Distributed QE (D-DQE) relay network. The performances of the D-DQE codebooks are examined by Monte-Carlo simulations, in which the feedback links and channel estimations are assumed to be error-free. The simulation results reveal that the symbol error rates of the D-DQE relay system improve the error performance of the QE codebooks when relay nodes are close to the source node. When error-free feedback bits are provided, the performance of the proposed D-DQE is better than that of Alamouti's Decode-Distributed Space-Time Coding (D-DSTC) relay network. The weakest relays are rejected to improve the performance of the D-DQE codebooks and reduce the number of feedback bits. This relay network is called Decode-Relay Rejection for Distributed Beamforming (D-RRDB) relay networks.
Kosuke MARUYAMA Hiroshi KAMEDA
A ghost reduction algorithm for multiple angle sensors tracking objects under dual hypotheses is proposed. When multiple sensors and multiple objects exist on the same plane, the conventional method is unable to distinguish the real objects and ghosts from all possible pairs of measurement angle vectors. In order to resolve the issue stated above, the proposed algorithm utilizes tracking process considering dual hypotheses of real objects and ghosts behaviors. The proposed algorithm predicts dynamics of all the intersections of measurement angle vector pairs with the hypotheses of real objects and ghosts. Each hypothesis is evaluated by the residuals between prediction data and intersection. The appropriate hypothesis is extracted trough several data sampling. Representative simulation results demonstrate the effectiveness of the proposed algorithm.
A covariance-based algorithm is proposed to find a barrage jammer suppression filter for surveillance radar with an adaptive array. The conventional adaptive beamformer (ABF) or adaptive sidelobe canceller (ASLC) with auxiliary antennas can be used successfully in sidelobe jammer rejection. When a jammer shares the same bearing with the target of interest, however, those methods inherently cancel the target in their attempt to null the jammer. By exploiting the jammer multipath scattered returns incident from other angles, the proposed algorithm uses only the auto-covariance matrix of the sample data produced by stacking range cell returns in a pulse repetition interval (PRI). It does not require estimation of direction of arrival (DOA) or time difference of arrival (TDOA) of multipath propagation, thus making it applicable to electronic countermeasure (ECM) environments with high power barrage jammers and it provides the victim radar with the ability to null both the sidelobe (sidebeam) and mainlobe (mainbeam) jammers simultaneously. Numeric simulations are provided to evaluate the performance of this filter in the presence of an intensive barrage jammer with jammer-to-signal ratio (JSR) greater than 30dB, and the achieved signal-to-jammer-plus-noise ratio (SJNR) improvement factor (IF) exceeds 46dB.
This paper presents an experimental evaluation of an ocean wave remote sensing system that uses bistatic GPS signal reflection to estimate wave characteristics. In our previous paper, a bistatic ocean wave remote sensing system by GPS was proposed to estimate the characteristics of sea swell near a harbor, and was also evaluated by numerical simulations. In the next phase, a prototype system has been developed and some basic experiments have been carried out in a coastal area in order to evaluate the system experimentally. In this paper, we will outline the prototype system. The system mainly consists of an array antenna, a front-end, and an estimator for ocean wave characteristics. Next, we explain that the estimator for ocean wave characteristics can identify each signal reflected from the ocean waves. Finally, the experiments show that the prototype system can receive the reflected signals from the sea-surface near the coast, and estimate the wave period and wavelength in the direction of the array antenna.