The search functionality is under construction.

Author Search Result

[Author] Yuki YOSHIKAWA(35hit)

1-20hit(35hit)

  • Statistical Evaluation of a Superconductive Physical Random Number Generator

    Tatsuro SUGIURA  Yuki YAMANASHI  Nobuyuki YOSHIKAWA  

     
    PAPER-Digital Applications

      Vol:
    E93-C No:4
      Page(s):
    453-457

    A physical random number generator, which generates truly random number trains by using the randomness of physical phenomena, is widely used in the field of cryptographic applications. We have developed an ultra high-speed superconductive physical random number generator that can generate random numbers at a frequency of more than 10 GHz by utilizing the high-speed operation and high-sensitivity of superconductive integrated circuits. In this study, we have statistically evaluated the quality of the random number trains generated by the superconductive physical random number generator. The performances of the statistical tests were based on a test method provided by National Institute of Standards and Technology (NIST). These statistical tests comprised several fundamental tests that were performed to evaluate the random number trains for their utilization in practical cryptographic applications. We have generated 230 random number trains consisting of 20,000-bits by using the superconductive physical random number generator fabricated by the SRL 2.5 kA/cm2 Nb standard process. The generated random number trains passed all the fundamental statistical tests. This result indicates that the superconductive random number generator can be sufficiently utilized in practical applications.

  • Design and Implementation of RSFQ Microwave Choppers for the Superconducting Quantum-Computing System

    Naoki TAKEUCHI  Yuki YAMANASHI  Nobuyuki YOSHIKAWA  

     
    PAPER-Digital Applications

      Vol:
    E93-C No:4
      Page(s):
    458-462

    We have been studying a superconducting quantum-computing system where superconducting qubits are controlled and read out by rapid single-flux- quantum (RSFQ) circuits. In this study, we designed and fabricated an RSFQ microwave chopper, which turns on and off an externally applied microwave to control qubit states with the time resolution of sub-nanosecond. The chopper is implemented in a microwave module and mounted in a dilution refrigerator. We tested the microwave chopper at 4.2 K. The amplitude of the output microwave was approximately 100 µV which is much larger than that of previously designed chopper. We also confirmed that the irradiation time can be controlled by RSFQ control circuits.

  • A GaAs MuMIC Power Amplifier with a Harmonic Rejection Filter for Digital European Cordless Telecommunication System

    Satoshi MAKIOKA  Noriyuki YOSHIKAWA  Kunihiko KANAZAWA  

     
    PAPER-Active Devices

      Vol:
    E79-C No:5
      Page(s):
    623-628

    A GaAs multilayer microwave integrated circuit(MuMIC) power amplifier with a harmonic rejection filter has been developed for 1.9-GHz digital European cordless telecommunication system. Adoption of the MuMIC structure has auccessfully ended up with Q-factor of 462 harmonic rejection filter. As a result, power-added efficiency of 62.2% and P1dB of 27 dBm have been obtained at drain supply voltage of 3.6V.

  • Development of Passive Interconnection Technology for SFQ Circuits

    Yoshihito HASHIMOTO  Shinichi YOROZU  Yoshio KAMEDA  Akira FUJIMAKI  Hirotaka TERAI  Nobuyuki YOSHIKAWA  

     
    INVITED PAPER

      Vol:
    E88-C No:2
      Page(s):
    198-207

    To enable the use of passive transmission lines (PTLs) for the interconnection of single-flux-quantum (SFQ) circuits, we have implemented a driver and a receiver and have developed a method for designing SFQ circuits with passive interconnections. Basic components and properties of passive interconnections, such as the frequency characteristics of the driver and receiver, the PTL delay, and the crosstalk between PTLs, have been experimentally verified. Our developed components and design method have been applied to actual SFQ circuits, such as a 44 switch having block-to-block passive interconnections and a 22 switch having gate-to-gate passive interconnections. We have also shown the advantages of PTLs over Josephson transmission lines (JTLs). We also discuss the prospects of SFQ circuits having passive interconnections.

  • Design and Evaluation of Magnetic Field Tolerant Single Flux Quantum Circuits for Superconductive Sensing Systems

    Yuki YAMANASHI  Nobuyuki YOSHIKAWA  

     
    PAPER

      Vol:
    E97-C No:3
      Page(s):
    178-181

    A promising application of a single-flux quantum (SFQ) circuit is read-out circuitry for a multi-channel superconductive sensor array. In such applications, the SFQ read-out circuit is expected to operate outside a magnetic shield. We investigated an SFQ circuit structure, which is tolerant to an external magnetic field, using the AIST 2.5kA/cm2 Nb standard 2 process, which has four Nb wiring layers including the ground plane. By covering the entire circuit using an upper Nb wiring layer called the control (CTL) layer, the influences of the external magnetic field on the SFQ circuit operation can be avoided. We experimentally evaluated the sheet inductance of the wiring layer underneath the CTL shielding layer to design a magnetic-field-tolerant SFQ circuit. We implemented and measured test circuits comprising toggle flip-flops (TFFs) to evaluate their magnetic field tolerances. The operating margin and maximum operating frequency of the designed TFF did not deteriorate with increases in the magnetic field applied to the test circuit, whereas the operating margin of the conventional TFF was reduced by applying the magnetic field. We have also demonstrated the high-speed operation of the designed TFF operated in an unshielded environment at a frequency of up to 120GHz with a wide operating margin.

  • A Practical Threshold Test Generation for Error Tolerant Application

    Hideyuki ICHIHARA  Kenta SUTOH  Yuki YOSHIKAWA  Tomoo INOUE  

     
    PAPER-Information Network

      Vol:
    E93-D No:10
      Page(s):
    2776-2782

    Threshold testing, which is an LSI testing method based on the acceptability of faults, is effective in yield enhancement of LSIs and selective hardening for LSI systems. In this paper, we propose test generation models for threshold test generation. Using the proposed models, we can efficiently identify acceptable faults and generate test patterns for unacceptable faults with a general test generation algorithm, i.e., without a test generation algorithm specialized for threshold testing. Experimental results show that our approach is, in practice, effective.

  • Recent Progress on Reversible Quantum-Flux-Parametron for Superconductor Reversible Computing Open Access

    Naoki TAKEUCHI  Yuki YAMANASHI  Nobuyuki YOSHIKAWA  

     
    INVITED PAPER

      Vol:
    E101-C No:5
      Page(s):
    352-358

    We have been investigating reversible quantum-flux-parametron (RQFP), which is a reversible logic gate using adiabatic quantum-flux-parametron (AQFP), toward realizing superconductor reversible computing. In this paper, we review the recent progress of RQFP. Followed by a brief explanation on AQFP, we first review the difference between irreversible logic gates and RQFP in light of time evolution and energy dissipation, based on our previous studies. Numerical calculation results reveal that the logic state of RQFP can be changed quasi-statically and adiabatically, or thermodynamically reversibly, and that the energy dissipation required for RQFP to perform a logic operation can be arbitrarily reduced. Lastly, we show recent experimental results of an RQFP cell, which was newly designed for the latest cell library. We observed the wide operation margins of more than 4.7dB with respect to excitation currents.

  • Majority Gate-Based Feedback Latches for Adiabatic Quantum Flux Parametron Logic

    Naoki TSUJI  Naoki TAKEUCHI  Yuki YAMANASHI  Thomas ORTLEPP  Nobuyuki YOSHIKAWA  

     
    PAPER

      Vol:
    E99-C No:6
      Page(s):
    710-716

    We have studied ultra-low-power superconductor circuits using adiabatic quantum flux parametron (AQFP) logic. Latches, which store logic data in logic circuits, are indispensable logic elements in the realization of AQFP computing systems. Among them, feedback latches, which hold data by using a feedback loop, have advantages in terms of their wide operation margins and high stability. Their drawbacks are their large junction counts and long latency. In this paper, we propose a majority gate-based feedback latch for AQFP logic with a reduced number of junctions. We designed and fabricated the proposed AQFP latches using a standard National Institute of Advanced Industrial Science and Technology (AIST) process. The measurement results showed that the feedback latches operate with wide operation margins that are comparable with circuit simulation results.

  • Inductance and Current Distribution Extraction in Nb Multilayer Circuits with Superconductive and Resistive Components Open Access

    Coenrad FOURIE  Naoki TAKEUCHI  Nobuyuki YOSHIKAWA  

     
    INVITED PAPER

      Vol:
    E99-C No:6
      Page(s):
    683-691

    We describe a calculation tool and modeling methods to find self and mutual inductance and current distribution in superconductive multilayer circuit layouts. Accuracy of the numerical solver is discussed and compared with experimental measurements. Effects of modeling parameter selection on calculation results are shown, and we make conclusions on the selection of modeling parameters for fast but sufficiently accurate calculations when calibration methods are used. Circuit theory for the calculation of branch impedances from the output of the numerical solver is discussed, and compensation for solution difficulties is shown through example. We elaborate on the construction of extraction models for superconductive integrated circuits, with and without resistive branches. We also propose a method to calculate current distribution in a multilayer circuit with multiple bias current feed points. Finally, detailed examples are shown where the effects of stacked vias, bias pillars, coupling, ground connection stacks and ground return currents in circuit layouts for the AIST advanced process (ADP2) and standard process (STP2) are analyzed. We show that multilayer inductance and current distribution extraction in such circuits provides much more information than merely branch inductance, and can be used to improve layouts; for example through reduced coupling between conductors.

  • 100 GHz Demonstrations Based on the Single-Flux-Quantum Cell Library for the 10 kA/cm2 Nb Multi-Layer Process

    Yuki YAMANASHI  Toshiki KAINUMA  Nobuyuki YOSHIKAWA  Irina KATAEVA  Hiroyuki AKAIKE  Akira FUJIMAKI  Masamitsu TANAKA  Naofumi TAKAGI  Shuichi NAGASAWA  Mutsuo HIDAKA  

     
    PAPER-Digital Applications

      Vol:
    E93-C No:4
      Page(s):
    440-444

    A single flux quantum (SFQ) logic cell library has been developed for the 10 kA/cm2 Nb multi-layer fabrication process to efficiently design large-scale SFQ digital circuits. In the new cell library, the critical current density of Josephson junctions is increased from 2.5 kA/cm2 to 10 kA/cm2 compared to our conventional cell library, and the McCumber-Stwart parameter of each Josephson junction is increased to 2 in order to increase the circuit operation speed. More than 300 cells have been designed, including fundamental logic cells and wiring cells for passive interconnects. We have measured all cells and confirmed they stably operate with wide operating margins. On-chip high-speed test of the toggle flip-flop (TFF) cell has been performed by measuring the input and output voltages. The TFF cell at the input frequency of up to 400 GHz was confirmed to operate correctly. Also, several fundamental digital circuits, a 4-bit concurrent-flow shift register and a bit-serial adder have been designed using the new cell library, and the correct operations of the circuits have been demonstrated at high clock frequencies of more than 100 GHz.

  • A Reconfigurable Data-Path Accelerator Based on Single Flux Quantum Circuits Open Access

    Hiroshi KATAOKA  Hiroaki HONDA  Farhad MEHDIPOUR  Nobuyuki YOSHIKAWA  Akira FUJIMAKI  Hiroyuki AKAIKE  Naofumi TAKAGI  Kazuaki MURAKAMI  

     
    INVITED PAPER

      Vol:
    E97-C No:3
      Page(s):
    141-148

    The single flux quantum (SFQ) is expected to be a next-generation high-speed and low-power technology in the field of logic circuits. CMOS as the dominant technology for conventional processors cannot be replaced with SFQ technology due to the difficulty of implementing feedback loops and conditional branches using SFQ circuits. This paper investigates the applicability of a reconfigurable data-path (RDP) accelerator based on SFQ circuits. The authors introduce detailed specifications of the SFQ-RDP architecture and compare its performance and power/performance ratio with those of a graphics-processing unit (GPU). The results show at most 1600 times higher efficiency in terms of Flops/W (floating-point operations per second/Watt) for some high-performance computing application programs.

  • Superconducting Digital Electronics for Controlling Quantum Computing Systems Open Access

    Nobuyuki YOSHIKAWA  

     
    INVITED PAPER

      Vol:
    E102-C No:3
      Page(s):
    217-223

    The recent rapid increase in the scale of superconducting quantum computing systems greatly increases the demand for qubit control by digital circuits operating at qubit temperatures. In this paper, superconducting digital circuits, such as single-flux quantum and adiabatic quantum flux parametron circuits are described, that are promising candidates for this purpose. After estimating their energy consumption and speed, a conceptual overview of the superconducting electronics for controlling a multiple-qubit system is provided, as well as some of its component circuits.

  • Design and Demonstration of a Single-Flux-Quantum Multi-Stop Time-to-Digital Converter for Time-of-Flight Mass Spectrometry

    Kyosuke SANO  Yuki YAMANASHI  Nobuyuki YOSHIKAWA  

     
    PAPER

      Vol:
    E97-C No:3
      Page(s):
    182-187

    We have been developing a superconducting time-of-flight mass spectrometry (TOF-MS) system, which utilizes a superconductive strip ion detector (SSID) and a single-flux-quantum (SFQ) multi-stop time-to-digital converter (TDC). The SFQ multi-stop TDC can measure the time intervals between multiple input signals and directly convert them into binary data. In this study, we designed and implemented 24-bit SFQ multi-stop TDCs with a 3×24-bit FIFO buffer using the AIST Nb standard process (STP2), whose time resolution and dynamic range are 100ps and 1.6ms, respectively. The timing jitter of the TDC was investigated by comparing two types of TDCs: one uses an on-chip SFQ clock generator (CG) and the other uses a microwave oscillator at room temperature. We confirmed the correct operation of both TDCs and evaluated their timing jitter. The experimentally-obtained timing jitter is about 40ns and 700ps for the TDCs with and without the on-chip SFQ CG, respectively, for the measured time interval of 50µs, which linearly increases with increase of the measured time interval.

  • 50 GHz Demonstration of an Integer-Type Butterfly Processing Circuit for an FFT Processor Using the 10 kA/cm2 Nb Process

    Yosuke SAKASHITA  Yuki YAMANASHI  Nobuyuki YOSHIKAWA  

     
    PAPER

      Vol:
    E98-C No:3
      Page(s):
    232-237

    We are developing a fast Fourier transform (FFT) processor using high-speed and low-power single-flux-quantum (SFQ) circuits. Our main concern is the development of an SFQ butterfly processing circuit, which is the core processing circuit in the FFT processor. In our previous study, we have confirmed the complete operation of an integer-type butterfly processing circuit using the AIST 2.5 kA/cm$^{2}$ Nb standard process at the frequency of 25 GHz. In this study, we have designed an integer-type butterfly processing circuit using the AIST 10,kA/cm$^{2}$,Nb advanced process and confirmed its high-speed operation at the maximum frequency of 50,GHz.

  • Proposal of a Desk-Side Supercomputer with Reconfigurable Data-Paths Using Rapid Single-Flux-Quantum Circuits

    Naofumi TAKAGI  Kazuaki MURAKAMI  Akira FUJIMAKI  Nobuyuki YOSHIKAWA  Koji INOUE  Hiroaki HONDA  

     
    INVITED PAPER

      Vol:
    E91-C No:3
      Page(s):
    350-355

    We propose a desk-side supercomputer with large-scale reconfigurable data-paths (LSRDPs) using superconducting rapid single-flux-quantum (RSFQ) circuits. It has several sets of computing unit which consists of a general-purpose microprocessor, an LSRDP and a memory. An LSRDP consists of a lot of, e.g., a few thousand, floating-point units (FPUs) and operand routing networks (ORNs) which connect the FPUs. We reconfigure the LSRDP to fit a computation, i.e., a group of floating-point operations, which appears in a 'for' loop of numerical programs by setting the route in ORNs before the execution of the loop. We propose to implement the LSRDPs by RSFQ circuits. The processors and the memories can be implemented by semiconductor technology. We expect that a 10 TFLOPS supercomputer, as well as a refrigerating engine, will be housed in a desk-side rack, using a near-future RSFQ process technology, such as 0.35 µm process.

  • Nb 9-Layer Fabrication Process for Superconducting Large-Scale SFQ Circuits and Its Process Evaluation Open Access

    Shuichi NAGASAWA  Kenji HINODE  Tetsuro SATOH  Mutsuo HIDAKA  Hiroyuki AKAIKE  Akira FUJIMAKI  Nobuyuki YOSHIKAWA  Kazuyoshi TAKAGI  Naofumi TAKAGI  

     
    INVITED PAPER

      Vol:
    E97-C No:3
      Page(s):
    132-140

    We describe the recent progress on a Nb nine-layer fabrication process for large-scale single flux quantum (SFQ) circuits. A device fabricated in this process is composed of an active layer including Josephson junctions (JJ) at the top, passive transmission line (PTL) layers in the middle, and a DC power layer at the bottom. We describe the process conditions and the fabrication equipment. We use both diagnostic chips and shift register (SR) chips to improve the fabrication process. The diagnostic chip was designed to evaluate the characteristics of basic elements such as junctions, contacts, resisters, and wiring, in addition to their defect evaluations. The SR chip was designed to evaluate defects depending on the size of the SFQ circuits. The results of a long-term evaluation of the diagnostic and SR chips showed that there was fairly good correlation between the defects of the diagnostic chips and yields of the SRs. We could obtain a yield of 100% for SRs including 70,000JJs. These results show that considerable progress has been made in reducing the number of defects and improving reliability.

  • Thermally Assisted Superconductor Transistors for Josephson-CMOS Hybrid Memories Open Access

    Kyosuke SANO  Masato SUZUKI  Kohei MARUYAMA  Soya TANIGUCHI  Masamitsu TANAKA  Akira FUJIMAKI  Masumi INOUE  Nobuyuki YOSHIKAWA  

     
    INVITED PAPER

      Vol:
    E101-C No:5
      Page(s):
    370-377

    We have studied on thermally assisted nano-structured transistors made of superconductor ultra-thin films. These transistors potentially work as interface devices for Josephson-CMOS (complementary metal oxide semiconductor) hybrid memory systems, because they can generate a high output voltage of sub-V enough to drive a CMOS transistor. In addition, our superconductor transistors are formed with very fine lines down to several tens of nm in widths, leading to very small foot print enabling us to make large capacity hybrid memories. Our superconductor transistors are made with niobium titanium nitride (NbTiN) thin films deposited on thermally-oxidized silicon substrates, on which other superconductor circuits or semiconductor circuits can be formed. The NbTiN thickness dependence of the critical temperature and of resistivity suggest thermally activated vortex or anti-vortex behavior in pseudo-two-dimensional superconducting films plays an important role for the operating principle of the transistors. To show the potential that the transistors can drive MOS transistors, we analyzed the driving ability of the superconductor transistors with HSPICE simulation. We also showed the turn-on behavior of a MOS transistor used for readout of a CMOS memory cell experimentally. These results showed the high potential of superconductor transistors for Josephson-CMOS hybrid memories.

  • Design Considerations of Data-Driven Self-Timed RSFQ Adder Circuits

    Nobuyuki YOSHIKAWA  Hiroshi TAGO  Kaoru YONEYAMA  

     
    INVITED PAPER-Digital Applications

      Vol:
    E81-C No:10
      Page(s):
    1618-1626

    We have designed rapid single-flux-quantum (RSFQ) adder circuits using two different architectures: one is the conventional architecture employing globally synchronous clocking and the other is the data-driven self-timed (DDST) architecture. It has been pointed out that the timing margin of the RSFQ logic is very sensitive to the circuit parameter variations which are induced by the fabrication process and the device parameter uncertainty. Considering the physical timing in the circuits, we have shown that the DDST architecture is advantageous for realizing RSFQ circuits operating at very high frequencies. We have also calculated the theoretical circuit yield of the DDST adders and shown that a four-bit system operating at 10 GHz is feasible with sufficient operating margin, considering the present 1 kA/cm2 Nb Josephson technology.

  • Bit-Serial Single Flux Quantum Microprocessor CORE

    Akira FUJIMAKI  Masamitsu TANAKA  Takahiro YAMADA  Yuki YAMANASHI  Heejoung PARK  Nobuyuki YOSHIKAWA  

     
    INVITED PAPER

      Vol:
    E91-C No:3
      Page(s):
    342-349

    We describe the development of single-flux-quantum (SFQ) microprocessors and the related technologies such as designing, circuit architecture, microarchitecture, etc. Since the microprocessors studied here aim for a general-purpose computing system, we employ the complexity-reduced (CORE) architecture in which the high-speed nature of the SFQ circuits is used not for increasing processor performance but for reducing the circuit complexity. The bit-serial processing is the most suitable way to realize the CORE architecture. We assembled all the best technologies concerning SFQ integrated circuits and designed the SFQ microprocessors, CORE1α, CORE1β, and CORE1γ. The CORE1β was made up of about 11000 Josephson junctions and successfully demonstrated. The peak performance reached 1400 million operations per second with a power consumption of 3.4 mW. We showed that the SFQ microprocessors had an advantage in a performance density to semiconductor's ones, which lead to the potential for constructing a high performance SFQ-circuit-based computing system.

  • A GaAs Monolithic High-Frequency Modulator IC for Laser-Diode Noise Suppression

    Tatsuo OTSUKI  Tsuyoshi TANAKA  Noriyuki YOSHIKAWA  Akio SHIMANO  Hiromitsu TAKAGI  Gota KANO  

     
    LETTER-Compound Semiconductor Devices

      Vol:
    E69-E No:4
      Page(s):
    296-298

    A GaAs monolithic high-frequency modulator IC which provides an efficient suppression of the RIN of a laser diode under application of the high-frequency power to the diode is reported. The oscillation frequency and the output power of the IC are designed to be 800 MHz and 15 dBm, respectively. Use of the IC permitted suppression of the RIN of the laser diode by almost 10 dB/Hz.

1-20hit(35hit)