Xizhu PENG Yuki YAMANASHI Nobuyuki YOSHIKAWA Akira FUJIMAKI Naofumi TAKAGI Kazuyoshi TAKAGI Mutsuo HIDAKA
Recently, we proposed a new data-path architecture, named a large-scale reconfigurable data-path (LSRDP), based on single-flux-quantum (SFQ) circuits, to establish a fundamental technology for future high-end computers. In this architecture, a large number of SFQ floating-point units (FPUs) are used as core components, and their high performance and low power consumption are essential. In this research, we implemented an SFQ half-precision bit-serial floating-point multiplier (FPM) with a target clock frequency of 50GHz, using the AIST 10kA/cm2 Nb process. The FPM was designed, based on a systolic-array architecture. It contains 11,066 Josephson junctions, including on-chip high-speed test circuits. The size and power consumption of the FPM are 6.66mm × 1.92mm and 2.83mW, respectively. Its correct operation was confirmed at a maximum frequency of 93.4GHz for the exponent part and of 72.0GHz for the significand part by on-chip high-speed tests.
Akira FUJIMAKI Masamitsu TANAKA Ryo KASAGI Katsumi TAKAGI Masakazu OKADA Yuhi HAYAKAWA Kensuke TAKATA Hiroyuki AKAIKE Nobuyuki YOSHIKAWA Shuichi NAGASAWA Kazuyoshi TAKAGI Naofumi TAKAGI
We describe a large-scale integrated circuit (LSI) design of rapid single-flux-quantum (RSFQ) circuits and demonstrate several reconfigurable data-path (RDP) processor prototypes based on the ISTEC Advanced Process (ADP2). The ADP2 LSIs are made up of nine Nb layers and Nb/AlOx/Nb Josephson junctions with a critical current density of 10kA/cm2, allowing higher operating frequencies and integration. To realize truly large-scale RSFQ circuits, careful design is necessary, with several compromises in the device structure, logic gates, and interconnects, balancing the competing demands of integration density, design flexibility, and fabrication yield. We summarize numerical and experimental results related to the development of a cell-based design in the ADP2, which features a unit cell size reduced to 30-µm square and up to four strip line tracks in the unit cell underneath the logic gates. The ADP LSIs can achieve ∼10 times the device density and double the operating frequency with the same power consumption per junction as conventional LSIs fabricated using the Nb four-layer process. We report the design and test results of RDP processor prototypes using the ADP2 cell library. The RDP processors are composed of many arrays of floating-point units (FPUs) and switch networks, and serve as accelerators in a high-performance computing system. The prototypes are composed of two-dimensional arrays of several arithmetic logic units instead of FPUs. The experimental results include a successful demonstration of full operation and reconfiguration in a 2×2 RDP prototype made up of 11.5k junctions at 45GHz after precise timing design. Partial operation of a 4×4 RDP prototype made up of 28.5k-junctions is also demonstrated, indicating the scalability of our timing design.
Naoki TAKEUCHI Taiki YAMAE Christopher L. AYALA Hideo SUZUKI Nobuyuki YOSHIKAWA
The adiabatic quantum-flux-parametron (AQFP) is an energy-efficient superconductor logic element based on the quantum flux parametron. AQFP circuits can operate with energy dissipation near the thermodynamic and quantum limits by maximizing the energy efficiency of adiabatic switching. We have established the design methodology for AQFP logic and developed various energy-efficient systems using AQFP logic, such as a low-power microprocessor, reversible computer, single-photon image sensor, and stochastic electronics. We have thus demonstrated the feasibility of the wide application of AQFP logic in future information and communications technology. In this paper, we present a tutorial review on AQFP logic to provide insights into AQFP circuit technology as an introduction to this research field. We describe the historical background, operating principle, design methodology, and recent progress of AQFP logic.
Fumihiro CHINA Naoki TAKEUCHI Hideo SUZUKI Yuki YAMANASHI Hirotaka TERAI Nobuyuki YOSHIKAWA
The adiabatic quantum flux parametron (AQFP) is an energy-efficient, high-speed superconducting logic device. To observe the tiny output currents from the AQFP in experiments, high-speed voltage drivers are indispensable. In the present study, we develop a compact voltage driver for AQFP logic based on a Josephson latching driver (JLD), which has been used as a high-speed driver for rapid single-flux-quantum (RSFQ) logic. In the JLD-based voltage driver, the signal currents of AQFP gates are converted into gap-voltage-level signals via an AQFP/RSFQ interface and a four-junction logic gate. Furthermore, this voltage driver includes only 15 Josephson junctions, which is much fewer than in the case for the previously designed driver based on dc superconducting quantum interference devices (60 junctions). In measurement, we successfully operate the JLD-based voltage driver up to 4 GHz. We also evaluate the bit error rate (BER) of the driver and find that the BER is 7.92×10-10 and 2.67×10-3 at 1GHz and 4GHz, respectively.
Taiki YAMAE Naoki TAKEUCHI Nobuyuki YOSHIKAWA
The adiabatic quantum-flux-parametron (AQFP) is an energy-efficient superconductor logic device. In a previous study, we proposed a low-latency clocking scheme called delay-line clocking, and several low-latency AQFP logic gates have been demonstrated. In delay-line clocking, the latency between adjacent excitation phases is determined by the propagation delay of excitation currents, and thus the rising time of excitation currents should be sufficiently small; otherwise, an AQFP gate can switch before the previous gate is fully excited. This means that delay-line clocking needs high clock frequencies, because typical excitation currents are sinusoidal and the rising time depends on the frequency. However, AQFP circuits need to be tested in a wide frequency range experimentally. Hence, in the present study, we investigate AQFP circuits adopting delay-line clocking with square excitation currents to apply delay-line clocking in a low frequency range. Square excitation currents have shorter rising time than sinusoidal excitation currents and thus enable low frequency operation. We demonstrate an AQFP buffer chain with delay-line clocking using square excitation currents, in which the latency is approximately 20ps per gate, and confirm that the operating margin for the buffer chain is kept sufficiently wide at clock frequencies below 1GHz, whereas in the sinusoidal case the operating margin shrinks below 500MHz. These results indicate that AQFP circuits adopting delay-line clocking can operate in a low frequency range by using square excitation currents.
Masataka SUGAHARA Wataru TAKANO Katsumi NIKI Nobuo HANEJI Nobuyuki YOSHIKAWA Katsuhiro IRIE
The measurement of dielectric property of cytochrome-c3 films reveals unusually large dielectric constant.
Tomoyuki TANAKA Christopher L. AYALA Nobuyuki YOSHIKAWA
Extremely energy-efficient logic devices are required for future low-power high-performance computing systems. Superconductor electronic technology has a number of energy-efficient logic families. Among them is the adiabatic quantum-flux-parametron (AQFP) logic family, which adiabatically switches the quantum-flux-parametron (QFP) circuit when it is excited by an AC power-clock. When compared to state-of-the-art CMOS technology, AQFP logic circuits have the advantage of relatively fast clock rates (5 GHz to 10 GHz) and 5 - 6 orders of magnitude reduction in energy before cooling overhead. We have been developing extremely energy-efficient computing processor components using the AQFP. The adder is the most basic computational unit and is important in the development of a processor. In this work, we designed and measured a 16-bit parallel prefix carry look-ahead Kogge-Stone adder (KSA). We fabricated the circuit using the AIST 10 kA/cm2 High-speed STandard Process (HSTP). Due to a malfunction in the measurement system, we were not able to confirm the complete operation of the circuit at the low frequency of 100 kHz in liquid He, but we confirmed that the outputs that we did observe are correct for two types of tests: (1) critical tests and (2) 110 random input tests in total. The operation margin of the circuit is wide, and we did not observe any calculation errors during measurement.
Akira FUJIMAKI Yoshiaki TAKAI Nobuyuki YOSHIKAWA
We present a design framework of a high-end server based on Single-Flux-Quantum (SFQ) circuit technologies. The server proposed here has multiple microprocessors and memories, which are mounted on a single board or package and are connected each other by SFQ interconnection switches. The extremely large bandwidth up to 100 Gbps/channel in the interconnection will be realized because of high throughput nature of the SFQ circuits. SFQ memories or Josephson-CMOS hybrid memories are employed as the shared memory of the multiprocessor. The SFQ microprocessors are constructed based on the complexity-reduced (CORE) architecture, in which complexity of the system is eased in exchange for using a high clock rate of the SFQ circuits. The processor is so-called Java-processor that directly executes the Java Byte Codes. Assuming a proper advancement of the Nb/AlOx/Nb integrated circuit process technology, we have estimated that the power consumption of the server system including a cryocooler is reduced by a factor of twenty as compared to the future CMOS system with the same processor performance, while the SFQ system has 100 times of magnitude larger memory-processor bandwidth.
Futabako MATSUZAKI Kenichi YODA Junichi KOSHIYAMA Kei MOTOORI Nobuyuki YOSHIKAWA
We have proposed a top-down design methodology for the RSFQ logic circuits based on the Binary Decision Diagram (BDD). In order to show the effectiveness of the methodology, we have designed a small RSFQ microprocessor based on simple architecture. We have compared the performance of the 8-bit RSFQ microprocessor with its CMOS version. It was found that the RSFQ system is superior in terms of the operating speed though it requires extremely large area. We have also implemented and tested a 1-bit ALU that is one of the important components of the microprocessor and confirmed its correct operation.
Tatsuro SUGIURA Yuki YAMANASHI Nobuyuki YOSHIKAWA
A physical random number generator, which generates truly random number trains by using the randomness of physical phenomena, is widely used in the field of cryptographic applications. We have developed an ultra high-speed superconductive physical random number generator that can generate random numbers at a frequency of more than 10 GHz by utilizing the high-speed operation and high-sensitivity of superconductive integrated circuits. In this study, we have statistically evaluated the quality of the random number trains generated by the superconductive physical random number generator. The performances of the statistical tests were based on a test method provided by National Institute of Standards and Technology (NIST). These statistical tests comprised several fundamental tests that were performed to evaluate the random number trains for their utilization in practical cryptographic applications. We have generated 230 random number trains consisting of 20,000-bits by using the superconductive physical random number generator fabricated by the SRL 2.5 kA/cm2 Nb standard process. The generated random number trains passed all the fundamental statistical tests. This result indicates that the superconductive random number generator can be sufficiently utilized in practical applications.
Naoki TAKEUCHI Yuki YAMANASHI Nobuyuki YOSHIKAWA
We have been studying a superconducting quantum-computing system where superconducting qubits are controlled and read out by rapid single-flux- quantum (RSFQ) circuits. In this study, we designed and fabricated an RSFQ microwave chopper, which turns on and off an externally applied microwave to control qubit states with the time resolution of sub-nanosecond. The chopper is implemented in a microwave module and mounted in a dilution refrigerator. We tested the microwave chopper at 4.2 K. The amplitude of the output microwave was approximately 100 µV which is much larger than that of previously designed chopper. We also confirmed that the irradiation time can be controlled by RSFQ control circuits.
Satoshi MAKIOKA Noriyuki YOSHIKAWA Kunihiko KANAZAWA
A GaAs multilayer microwave integrated circuit(MuMIC) power amplifier with a harmonic rejection filter has been developed for 1.9-GHz digital European cordless telecommunication system. Adoption of the MuMIC structure has auccessfully ended up with Q-factor of 462 harmonic rejection filter. As a result, power-added efficiency of 62.2% and P1dB of 27 dBm have been obtained at drain supply voltage of 3.6V.
Yoshihito HASHIMOTO Shinichi YOROZU Yoshio KAMEDA Akira FUJIMAKI Hirotaka TERAI Nobuyuki YOSHIKAWA
To enable the use of passive transmission lines (PTLs) for the interconnection of single-flux-quantum (SFQ) circuits, we have implemented a driver and a receiver and have developed a method for designing SFQ circuits with passive interconnections. Basic components and properties of passive interconnections, such as the frequency characteristics of the driver and receiver, the PTL delay, and the crosstalk between PTLs, have been experimentally verified. Our developed components and design method have been applied to actual SFQ circuits, such as a 44 switch having block-to-block passive interconnections and a 22 switch having gate-to-gate passive interconnections. We have also shown the advantages of PTLs over Josephson transmission lines (JTLs). We also discuss the prospects of SFQ circuits having passive interconnections.
Yuki YAMANASHI Nobuyuki YOSHIKAWA
A promising application of a single-flux quantum (SFQ) circuit is read-out circuitry for a multi-channel superconductive sensor array. In such applications, the SFQ read-out circuit is expected to operate outside a magnetic shield. We investigated an SFQ circuit structure, which is tolerant to an external magnetic field, using the AIST 2.5kA/cm2 Nb standard 2 process, which has four Nb wiring layers including the ground plane. By covering the entire circuit using an upper Nb wiring layer called the control (CTL) layer, the influences of the external magnetic field on the SFQ circuit operation can be avoided. We experimentally evaluated the sheet inductance of the wiring layer underneath the CTL shielding layer to design a magnetic-field-tolerant SFQ circuit. We implemented and measured test circuits comprising toggle flip-flops (TFFs) to evaluate their magnetic field tolerances. The operating margin and maximum operating frequency of the designed TFF did not deteriorate with increases in the magnetic field applied to the test circuit, whereas the operating margin of the conventional TFF was reduced by applying the magnetic field. We have also demonstrated the high-speed operation of the designed TFF operated in an unshielded environment at a frequency of up to 120GHz with a wide operating margin.
Hideyuki ICHIHARA Kenta SUTOH Yuki YOSHIKAWA Tomoo INOUE
Threshold testing, which is an LSI testing method based on the acceptability of faults, is effective in yield enhancement of LSIs and selective hardening for LSI systems. In this paper, we propose test generation models for threshold test generation. Using the proposed models, we can efficiently identify acceptable faults and generate test patterns for unacceptable faults with a general test generation algorithm, i.e., without a test generation algorithm specialized for threshold testing. Experimental results show that our approach is, in practice, effective.
Naoki TAKEUCHI Yuki YAMANASHI Nobuyuki YOSHIKAWA
We have been investigating reversible quantum-flux-parametron (RQFP), which is a reversible logic gate using adiabatic quantum-flux-parametron (AQFP), toward realizing superconductor reversible computing. In this paper, we review the recent progress of RQFP. Followed by a brief explanation on AQFP, we first review the difference between irreversible logic gates and RQFP in light of time evolution and energy dissipation, based on our previous studies. Numerical calculation results reveal that the logic state of RQFP can be changed quasi-statically and adiabatically, or thermodynamically reversibly, and that the energy dissipation required for RQFP to perform a logic operation can be arbitrarily reduced. Lastly, we show recent experimental results of an RQFP cell, which was newly designed for the latest cell library. We observed the wide operation margins of more than 4.7dB with respect to excitation currents.
Naoki TSUJI Naoki TAKEUCHI Yuki YAMANASHI Thomas ORTLEPP Nobuyuki YOSHIKAWA
We have studied ultra-low-power superconductor circuits using adiabatic quantum flux parametron (AQFP) logic. Latches, which store logic data in logic circuits, are indispensable logic elements in the realization of AQFP computing systems. Among them, feedback latches, which hold data by using a feedback loop, have advantages in terms of their wide operation margins and high stability. Their drawbacks are their large junction counts and long latency. In this paper, we propose a majority gate-based feedback latch for AQFP logic with a reduced number of junctions. We designed and fabricated the proposed AQFP latches using a standard National Institute of Advanced Industrial Science and Technology (AIST) process. The measurement results showed that the feedback latches operate with wide operation margins that are comparable with circuit simulation results.
Coenrad FOURIE Naoki TAKEUCHI Nobuyuki YOSHIKAWA
We describe a calculation tool and modeling methods to find self and mutual inductance and current distribution in superconductive multilayer circuit layouts. Accuracy of the numerical solver is discussed and compared with experimental measurements. Effects of modeling parameter selection on calculation results are shown, and we make conclusions on the selection of modeling parameters for fast but sufficiently accurate calculations when calibration methods are used. Circuit theory for the calculation of branch impedances from the output of the numerical solver is discussed, and compensation for solution difficulties is shown through example. We elaborate on the construction of extraction models for superconductive integrated circuits, with and without resistive branches. We also propose a method to calculate current distribution in a multilayer circuit with multiple bias current feed points. Finally, detailed examples are shown where the effects of stacked vias, bias pillars, coupling, ground connection stacks and ground return currents in circuit layouts for the AIST advanced process (ADP2) and standard process (STP2) are analyzed. We show that multilayer inductance and current distribution extraction in such circuits provides much more information than merely branch inductance, and can be used to improve layouts; for example through reduced coupling between conductors.