The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

221-240hit(42807hit)

  • Development of Liquid-Phase Bioassay Using AC Susceptibility Measurement of Magnetic Nanoparticles Open Access

    Takako MIZOGUCHI  Akihiko KANDORI  Keiji ENPUKU  

     
    PAPER

      Pubricized:
    2023/11/21
      Vol:
    E107-C No:6
      Page(s):
    183-189

    Simple and quick tests at medical clinics have become increasingly important. Magnetic sensing techniques have been developed to detect biomarkers using magnetic nanoparticles in liquid-phase assays. We developed a biomarker assay that involves using an alternating current (AC) susceptibility measurement system that uses functional magnetic particles and magnetic sensing technology. We also developed compact biomarker measuring equipment to enable quick testing. Our assay is a one-step homogeneous assay that involves simply mixing a sample with a reagent, shortening testing time and simplifying processing. Using our compact measuring equipment, which includes anisotropic magneto resistance (AMR) sensors, we conducted high-sensitivity measurements of extremely small amounts of two biomarkers (C-reactive protein, CRP and α-Fetoprotein, AFP) used for diagnosing arteriosclerosis and malignant tumors. The results indicate that an extremely small amount of CRP and AFP could be detected within 15 min, which demonstrated the possibility of a simple and quick high-sensitivity immunoassay that involves using an AC-susceptibility measurement system.

  • Estimation of Core Size Distribution of Magnetic Nanoparticles Using High-Tc SQUID Magnetometer and Particle Swarm Optimizer-Based Inversion Technique Open Access

    Mohd Mawardi SAARI  Mohd Herwan SULAIMAN  Toshihiko KIWA  

     
    PAPER

      Pubricized:
    2023/10/25
      Vol:
    E107-C No:6
      Page(s):
    176-182

    In this work, the core size estimation technique of magnetic nanoparticles (MNPs) using the static magnetization curve obtained from a high-Tc SQUID magnetometer and a metaheuristic inversion technique based on the Particle Swarm Optimizer (PSO) algorithm is presented. The high-Tc SQUID magnetometer is constructed from a high-Tc SQUID sensor coupled by a flux transformer to sense the modulated magnetization signal from a sample. The magnetization signal is modulated by the lateral vibration of the sample on top of a planar differential detection coil of the flux transformer. A pair of primary and excitation coils are utilized to apply an excitation field parallel to the sensitive axis of the detection coil. Using the high-Tc SQUID magnetometer, the magnetization curve of a commercial MNP sample (Resovist) was measured in a logarithmic scale of the excitation field. The PSO inverse technique is then applied to the magnetization curve to construct the magnetic moment distribution. A multimodal normalized log-normal distribution was used in the minimization of the objective function of the PSO inversion technique, and a modification of the PSO search region is proposed to improve the exploration and exploitation of the PSO particles. As a result, a good agreement on the Resovist magnetic core size was obtained between the proposed technique and the non-negative least square (NNLS) inversion technique. The estimated core sizes of 8.0484 nm and 20.3018 nm agreed well with the values reported in the literature using the commercial low-Tc SQUID magnetometer with the SVD and NNLS inversion techniques. Compared to the NNLS inversion technique, the PSO inversion technique had merits in exploring an optimal core size distribution freely without being regularized by a parameter and facilitating an easy peak position determination owing to the smoothness of the constructed distribution. The combination of the high-Tc SQUID magnetometer and the PSO-based reconstruction technique offers a powerful approach for characterizing the MNP core size distribution, and further improvements can be expected from the recent state-of-the-art optimization algorithm to optimize further the computation time and the best objective function value.

  • Development of Tunnel Magneto-Resistive Sensors Open Access

    Mikihiko OOGANE  

     
    INVITED PAPER

      Pubricized:
    2023/12/04
      Vol:
    E107-C No:6
      Page(s):
    171-175

    The magnetic field resolution of the tunnel magneto-resistive (TMR) sensors has been improving and it reaches below 1.0 pT/Hz0.5 at low frequency. The real-time measurement of the magnetocardiography (MCG) and the measurement of the magnetoencephalography (MEG) have been demonstrated by developed TMR sensors. Although the MCG and MEG have been applied to diagnosis of diseases, the conventional MCG/MEG system using superconducting quantum interference devices (SQUIDs) cannot measure the signal by touching the body, the body must be fixed, and maintenance costs are huge. The MCG/MEG system with TMR sensors operating at room temperature have the potential to solve these problems. In addition, it has the great advantage that it does not require a special magnetic shielded room. Further developments are expected to progress to maximize these unique features of TMR sensors.

  • Simulation of Scalar-Mode Optically Pumped Magnetometers to Search Optimal Operating Conditions Open Access

    Yosuke ITO  Tatsuya GOTO  Takuma HORI  

     
    INVITED PAPER

      Pubricized:
    2023/12/04
      Vol:
    E107-C No:6
      Page(s):
    164-170

    In recent years, measuring biomagnetic fields in the Earth’s field by differential measurements of scalar-mode OPMs have been actively attempted. In this study, the sensitivity of the scalar-mode OPMs under the geomagnetic environment in the laboratory was studied by numerical simulation. Although the noise level of the scalar-mode OPM in the laboratory environment was calculated to be 104 pT/$\sqrt{\mathrm{Hz}}$, the noise levels using the first-order and the second-order differential configurations were found to be 529 fT/cm/$\sqrt{\mathrm{Hz}}$ and 17.2 fT/cm2/$\sqrt{\mathrm{Hz}}$, respectively. This result indicated that scalar-mode OPMs can measure very weak magnetic fields such as MEG without high-performance magnetic shield roomns. We also studied the operating conditions by varying repetition frequency and temperature. We found that scalar-mode OPMs have an upper limit of repetition frequency and temperature, and that the repetition frequency should be set below 4 kHz and the temperature should be set below 120°C.

  • FOREWORD Open Access

    Akihiko KANDORI  

     
    FOREWORD

      Vol:
    E107-C No:6
      Page(s):
    163-163
  • A 0.13 mJ/Prediction CIFAR-100 Fully Synthesizable Raster-Scan-Based Wired-Logic Processor in 16-nm FPGA Open Access

    Dongzhu LI  Zhijie ZHAN  Rei SUMIKAWA  Mototsugu HAMADA  Atsutake KOSUGE  Tadahiro KURODA  

     
    PAPER

      Pubricized:
    2023/11/24
      Vol:
    E107-C No:6
      Page(s):
    155-162

    A 0.13mJ/prediction with 68.6% accuracy wired-logic deep neural network (DNN) processor is developed in a single 16-nm field-programmable gate array (FPGA) chip. Compared with conventional von-Neumann architecture DNN processors, the energy efficiency is greatly improved by eliminating DRAM/BRAM access. A technical challenge for conventional wired-logic processors is the large amount of hardware resources required for implementing large-scale neural networks. To implement a large-scale convolutional neural network (CNN) into a single FPGA chip, two technologies are introduced: (1) a sparse neural network known as a non-linear neural network (NNN), and (2) a newly developed raster-scan wired-logic architecture. Furthermore, a novel high-level synthesis (HLS) technique for wired-logic processor is proposed. The proposed HLS technique enables the automatic generation of two key components: (1) Verilog-hardware description language (HDL) code for a raster-scan-based wired-logic processor and (2) test bench code for conducting equivalence checking. The automated process significantly mitigates the time and effort required for implementation and debugging. Compared with the state-of-the-art FPGA-based processor, 238 times better energy efficiency is achieved with only a slight decrease in accuracy on the CIFAR-100 task. In addition, 7 times better energy efficiency is achieved compared with the state-of-the-art network-optimized application-specific integrated circuit (ASIC).

  • FOREWORD Open Access

    Ryusuke EGAWA  Yasutaka WADA  

     
    FOREWORD

      Vol:
    E107-C No:6
      Page(s):
    153-154
  • A Novel Remote-Tracking Heart Rate Measurement Method Based on Stepping Motor and mm-Wave FMCW Radar Open Access

    Yaokun HU  Xuanyu PENG  Takeshi TODA  

     
    PAPER-Sensing

      Vol:
    E107-B No:6
      Page(s):
    470-486

    The subject must be motionless for conventional radar-based non-contact vital signs measurements. Additionally, the measurement range is limited by the design of the radar module itself. Although the accuracy of measurements has been improving, the prospects for their application could have been faster to develop. This paper proposed a novel radar-based adaptive tracking method for measuring the heart rate of the moving monitored person. The radar module is fixed on a circular plate and driven by stepping motors to rotate it. In order to protect the user’s privacy, the method uses radar signal processing to detect the subject’s position to control a stepping motor that adjusts the radar’s measurement range. The results of the fixed-route experiments revealed that when the subject was moving at a speed of 0.5 m/s, the mean values of RMSE for heart rate measurements were all below 2.85 beat per minute (bpm), and when moving at a speed of 1 m/s, they were all below 4.05 bpm. When subjects walked at random routes and speeds, the RMSE of the measurements were all below 6.85 bpm, with a mean value of 4.35 bpm. The average RR interval time of the reconstructed heartbeat signal was highly correlated with the electrocardiography (ECG) data, with a correlation coefficient of 0.9905. In addition, this study not only evaluated the potential effect of arm swing (more normal walking motion) on heart rate measurement but also demonstrated the ability of the proposed method to measure heart rate in a multiple-people scenario.

  • LSTM Neural Network Algorithm for Handover Improvement in a Non-Ideal Network Using O-RAN Near-RT RIC Open Access

    Baud Haryo PRANANTO   ISKANDAR   HENDRAWAN  Adit KURNIAWAN  

     
    PAPER-Network Management/Operation

      Vol:
    E107-B No:6
      Page(s):
    458-469

    Handover is an important property of cellular communication that enables the user to move from one cell to another without losing the connection. It is a very crucial process for the quality of the user’s experience because it may interrupt data transmission. Therefore, good handover management is very important in the current and future cellular systems. Several techniques have been employed to improve the handover performance, usually to increase the probability of a successful handover. One of the techniques is predictive handover which predicts the target cell using some methods other than the traditional measurement-based algorithm, including using machine learning. Several studies have been conducted in the implementation of predictive handover, most of them by modifying the internal algorithm of existing network elements, such as the base station. We implemented a predictive handover algorithm using an intelligent node outside the existing network elements to minimize the modification of the network and to create modularity in the system. Using a recently standardized Open Radio Access Network (O-RAN) Near Realtime Radio Intelligent Controller (Near-RT RIC), we created a modular application that can improve the handover performance by determining the target cell using machine learning techniques. In our previous research, we modified The Near-RT RIC original software that is using vector autoregression to determine the target cell by predicting the throughput of each neighboring cell. We also modified the method using a Multi-Layer Perceptron (MLP) neural network. In this paper, we redesigned the neural network using Long Short-Term Memory (LSTM) that can better handle time series data. We proved that our proposed LSTM-based machine learning algorithms used in Near-RT RIC can improve the handover performance compared to the traditional measurement-based algorithm.

  • Federated Deep Reinforcement Learning for Multimedia Task Offloading and Resource Allocation in MEC Networks Open Access

    Rongqi ZHANG  Chunyun PAN  Yafei WANG  Yuanyuan YAO  Xuehua LI  

     
    PAPER-Network

      Vol:
    E107-B No:6
      Page(s):
    446-457

    With maturation of 5G technology in recent years, multimedia services such as live video streaming and online games on the Internet have flourished. These multimedia services frequently require low latency, which pose a significant challenge to compute the high latency requirements multimedia tasks. Mobile edge computing (MEC), is considered a key technology solution to address the above challenges. It offloads computation-intensive tasks to edge servers by sinking mobile nodes, which reduces task execution latency and relieves computing pressure on multimedia devices. In order to use MEC paradigm reasonably and efficiently, resource allocation has become a new challenge. In this paper, we focus on the multimedia tasks which need to be uploaded and processed in the network. We set the optimization problem with the goal of minimizing the latency and energy consumption required to perform tasks in multimedia devices. To solve the complex and non-convex problem, we formulate the optimization problem as a distributed deep reinforcement learning (DRL) problem and propose a federated Dueling deep Q-network (DDQN) based multimedia task offloading and resource allocation algorithm (FDRL-DDQN). In the algorithm, DRL is trained on the local device, while federated learning (FL) is responsible for aggregating and updating the parameters from the trained local models. Further, in order to solve the not identically and independently distributed (non-IID) data problem of multimedia devices, we develop a method for selecting participating federated devices. The simulation results show that the FDRL-DDQN algorithm can reduce the total cost by 31.3% compared to the DQN algorithm when the task data is 1000 kbit, and the maximum reduction can be 35.3% compared to the traditional baseline algorithm.

  • Physical Layer Security Enhancement for mmWave System with Multiple RISs and Imperfect CSI Open Access

    Qingqing TU  Zheng DONG  Xianbing ZOU  Ning WEI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E107-B No:6
      Page(s):
    430-445

    Despite the appealing advantages of reconfigurable intelligent surfaces (RIS) aided mmWave communications, there remain practical issues that need to be addressed before the large-scale deployment of RISs in future wireless networks. In this study, we jointly consider the non-neglectable practical issues in a multi-RIS-aided mmWave system, which can significantly affect the secrecy performance, including the high computational complexity, imperfect channel state information (CSI), and finite resolution of phase shifters. To solve this non-convex challenging stochastic optimization problem, we propose a robust and low-complexity algorithm to maximize the achievable secrete rate. Specially, by combining the benefits of fractional programming and the stochastic successive convex approximation techniques, we transform the joint optimization problem into some convex ones and solve them sub-optimally. The theoretical analysis and simulation results demonstrate that the proposed algorithms could mitigate the joint negative effects of practical issues and yielded a tradeoff between secure performance and complexity/overhead outperforming non-robust benchmarks, which increases the robustness and flexibility of multiple RIS deployments in future wireless networks.

  • IEICE Transactions on Communications: Editor's Message Open Access

    Go HASEGAWA  

     
    MESSAGE

      Vol:
    E107-B No:6
      Page(s):
    429-429
  • Reservoir-Based 1D Convolution: Low-Training-Cost AI Open Access

    Yuichiro TANAKA  Hakaru TAMUKOH  

     
    LETTER-Neural Networks and Bioengineering

      Pubricized:
    2023/09/11
      Vol:
    E107-A No:6
      Page(s):
    941-944

    In this study, we introduce a reservoir-based one-dimensional (1D) convolutional neural network that processes time-series data at a low computational cost, and investigate its performance and training time. Experimental results show that the proposed network consumes lower training computational costs and that it outperforms the conventional reservoir computing in a sound-classification task.

  • Dataset Distillation Using Parameter Pruning Open Access

    Guang LI  Ren TOGO  Takahiro OGAWA  Miki HASEYAMA  

     
    LETTER-Image

      Pubricized:
    2023/09/06
      Vol:
    E107-A No:6
      Page(s):
    936-940

    In this study, we propose a novel dataset distillation method based on parameter pruning. The proposed method can synthesize more robust distilled datasets and improve distillation performance by pruning difficult-to-match parameters during the distillation process. Experimental results on two benchmark datasets show the superiority of the proposed method.

  • Performance of the Typical User in RIS-Assisted Indoor Ultra Dense Networks Open Access

    Sinh Cong LAM  Bach Hung LUU  Kumbesan SANDRASEGARAN  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E107-A No:6
      Page(s):
    932-935

    Cooperative Communication is one of the most effective techniques to improve the desired signal quality of the typical user. This paper studies an indoor cellular network system that deploys the Reconfigurable Intelligent Surfaces (RIS) at the position of BSs to enable the cooperative features. To evaluate the network performance, the coverage probability expression of the typical user in the indoor wireless environment with presence of walls and effects of Rayleigh fading is derived. The analytical results shows that the RIS-assisted system outperforms the regular one in terms of coverage probability.

  • An Adaptively Biased OFDM Based on Hartley Transform for Visible Light Communication Systems Open Access

    Menglong WU  Yongfa XIE  Yongchao SHI  Jianwen ZHANG  Tianao YAO  Wenkai LIU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/09/20
      Vol:
    E107-A No:6
      Page(s):
    928-931

    Direct-current biased optical orthogonal frequency division multiplexing (DCO-OFDM) converts bipolar OFDM signals into unipolar non-negative signals by introducing a high DC bias, which satisfies the requirement that the signal transmitted by intensity modulated/direct detection (IM/DD) must be positive. However, the high DC bias results in low power efficiency of DCO-OFDM. An adaptively biased optical OFDM was proposed, which could be designed with different biases according to the signal amplitude to improve power efficiency in this letter. The adaptive bias does not need to be taken off deliberately at the receiver, and the interference caused by the adaptive bias will only be placed on the reserved subcarriers, which will not affect the effective information. Moreover, the proposed OFDM uses Hartley transform instead of Fourier transform used in conventional optical OFDM, which makes this OFDM have low computational complexity and high spectral efficiency. The simulation results show that the normalized optical bit energy to noise power ratio (Eb(opt)/N0) required by the proposed OFDM at the bit error rate (BER) of 10-3 is, on average, 7.5 dB and 3.4 dB lower than that of DCO-OFDM and superimposed asymmetrically clipped optical OFDM (ACO-OFDM), respectively.

  • Secrecy Outage Probability and Secrecy Diversity Order of Alamouti STBC with Decision Feedback Detection over Time-Selective Fading Channels Open Access

    Gyulim KIM  Hoojin LEE  Xinrong LI  Seong Ho CHAE  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/09/19
      Vol:
    E107-A No:6
      Page(s):
    923-927

    This letter studies the secrecy outage probability (SOP) and the secrecy diversity order of Alamouti STBC with decision feedback (DF) detection over the time-selective fading channels. For given temporal correlations, we have derived the exact SOPs and their asymptotic approximations for all possible combinations of detection schemes including joint maximum likehood (JML), zero-forcing (ZF), and DF at Bob and Eve. We reveal that the SOP is mainly influenced by the detection scheme of the legitimate receiver rather than eavesdropper and the achievable secrecy diversity order converges to two and one for JML only at Bob (i.e., JML-JML/ZF/DF) and for the other cases (i.e., ZF-JML/ZF/DF, DF-JML/ZF/DF), respectively. Here, p-q combination pair indicates that Bob and Eve adopt the detection method p ∈ {JML, ZF, DF} and q ∈ {JML, ZF, DF}, respectively.

  • Dynamic Limited Variable Step-Size Algorithm Based on the MSD Variation Cost Function Open Access

    Yufei HAN  Jiaye XIE  Yibo LI  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2023/09/11
      Vol:
    E107-A No:6
      Page(s):
    919-922

    The steady-state and convergence performances are important indicators to evaluate adaptive algorithms. The step-size affects these two important indicators directly. Many relevant scholars have also proposed some variable step-size adaptive algorithms for improving performance. However, there are still some problems in these existing variable step-size adaptive algorithms, such as the insufficient theoretical analysis, the imbalanced performance and the unachievable parameter. These problems influence the actual performance of some algorithms greatly. Therefore, we intend to further explore an inherent relationship between the key performance and the step-size in this paper. The variation of mean square deviation (MSD) is adopted as the cost function. Based on some theoretical analyses and derivations, a novel variable step-size algorithm with a dynamic limited function (DLF) was proposed. At the same time, the sufficient theoretical analysis is conducted on the weight deviation and the convergence stability. The proposed algorithm is also tested with some typical algorithms in many different environments. Both the theoretical analysis and the experimental result all have verified that the proposed algorithm equips a superior performance.

  • A POMDP-Based Approach to Assortment Optimization Problem for Vending Machine Open Access

    Gaku NEMOTO  Kunihiko HIRAISHI  

     
    PAPER-Mathematical Systems Science

      Pubricized:
    2023/09/05
      Vol:
    E107-A No:6
      Page(s):
    909-918

    Assortment optimization is one of main problems for retailers, and has been widely studied. In this paper, we focus on vending machines, which have many characteristic issues to be considered. We first formulate an assortment optimization problem for vending machines, next propose a model that represents consumer’s decision making, and then show a solution method based on partially observable Markov decision process (POMDP). The problem includes incomplete state observation, stochastic consumer behavior and policy decisions that maximize future expected rewards. Using computer simulation, we observe that sales increases compared to that by heuristic methods under the same condition. Moreover, the sales approaches the theoretical upper bound.

  • Analysis of Blood Cell Image Recognition Methods Based on Improved CNN and Vision Transformer Open Access

    Pingping WANG  Xinyi ZHANG  Yuyan ZHAO  Yueti LI  Kaisheng XU  Shuaiyin ZHAO  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2023/09/15
      Vol:
    E107-A No:6
      Page(s):
    899-908

    Leukemia is a common and highly dangerous blood disease that requires early detection and treatment. Currently, the diagnosis of leukemia types mainly relies on the pathologist’s morphological examination of blood cell images, which is a tedious and time-consuming process, and the diagnosis results are highly subjective and prone to misdiagnosis and missed diagnosis. This research suggests a blood cell image recognition technique based on an enhanced Vision Transformer to address these problems. Firstly, this paper incorporate convolutions with token embedding to replace the positional encoding which represent coarse spatial information. Then based on the Transformer’s self-attention mechanism, this paper proposes a sparse attention module that can select identifying regions in the image, further enhancing the model’s fine-grained feature expression capability. Finally, this paper uses a contrastive loss function to further increase the intra-class consistency and inter-class difference of classification features. According to experimental results, The model in this study has an identification accuracy of 92.49% on the Munich single-cell morphological dataset, which is an improvement of 1.41% over the baseline. And comparing with sota Swin transformer, this method still get greater performance. So our method has the potential to provide reference for clinical diagnosis by physicians.

221-240hit(42807hit)