The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

3541-3560hit(42807hit)

  • Packet-Oriented Erasure Correcting Codes by Bit-Level Shift Operation and Exclusive OR

    Yuta HANAKI  Takayuki NOZAKI  

     
    PAPER-Erasure Correction

      Vol:
    E102-A No:12
      Page(s):
    1622-1630

    This paper constructs packet-oriented erasure correcting codes and their systematic forms for the distributed storage systems. The proposed codes are encoded by exclusive OR and bit-level shift operation. By the shift operation, the encoded packets are slightly longer than the source packets. This paper evaluates the extra length of the encoded packets, called overhead, and shows that the proposed codes have smaller overheads than the zigzag decodable codes, which are existing codes using bit-level shift operation and exclusive OR.

  • Achievable Rate Regions for Source Coding with Delayed Partial Side Information Open Access

    Tetsunao MATSUTA  Tomohiko UYEMATSU  

     
    PAPER-Shannon Theory

      Vol:
    E102-A No:12
      Page(s):
    1631-1641

    In this paper, we consider a source coding with side information partially used at the decoder through a codeword. We assume that there exists a relative delay (or gap) of the correlation between the source sequence and side information. We also assume that the delay is unknown but the maximum of possible delays is known to two encoders and the decoder, where we allow the maximum of delays to change by the block length. In this source coding, we give an inner bound and an outer bound on the achievable rate region, where the achievable rate region is the set of rate pairs of encoders such that the decoding error probability vanishes as the block length tends to infinity. Furthermore, we clarify that the inner bound coincides with the outer bound when the maximum of delays for the block length converges to a constant.

  • Variable-Length Intrinsic Randomness on Two Performance Criteria Based on Variational Distance

    Jun YOSHIZAWA  Shota SAITO  Toshiyasu MATSUSHIMA  

     
    PAPER-Shannon Theory

      Vol:
    E102-A No:12
      Page(s):
    1642-1650

    This paper investigates the problem of variable-length intrinsic randomness for a general source. For this problem, we can consider two performance criteria based on the variational distance: the maximum and average variational distances. For the problem of variable-length intrinsic randomness with the maximum variational distance, we derive a general formula of the average length of uniform random numbers. Further, we derive the upper and lower bounds of the general formula and the formula for a stationary memoryless source. For the problem of variable-length intrinsic randomness with the average variational distance, we also derive a general formula of the average length of uniform random numbers.

  • Precoder and Postcoder Design for Wireless Video Streaming with Overloaded Multiuser MIMO-OFDM Systems

    Koji TASHIRO  Masayuki KUROSAKI  Hiroshi OCHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:12
      Page(s):
    1825-1833

    Mobile video traffic is expected to increase explosively because of the proliferating number of Wi-Fi terminals. An overloaded multiple-input multiple-output (MIMO) technique allows the receiver to implement smaller number of antennas than the transmitter in exchange for degradation in video quality and a large amount of computational complexity for postcoding at the receiver side. This paper proposes a novel linear precoder for high-quality video streaming in overloaded multiuser MIMO systems, which protects visually significant portions of a video stream. A low complexity postcoder is also proposed, which detects some of data symbols by linear detection and the others by a prevoting vector cancellation (PVC) approach. It is shown from simulation results that the combination use of the proposed precoder and postcoder achieves higher-quality video streaming to multiple users in a wider range of signal-to-noise ratio (SNR) than a conventional unequal error protection scheme. The proposed precoder attains 40dB in peak signal-to-noise ratio even in poor channel conditions such as the SNR of 12dB. In addition, due to the stepwise acquisition of data symbols by means of linear detection and PVC, the proposed postcoder reduces the number of complex additions by 76% and that of multiplications by 64% compared to the conventional PVC.

  • Frequency Efficient Subcarrier Spacing in Multicarrier Backscatter Sensors System Open Access

    Jin MITSUGI  Yuki SATO  Yuusuke KAWAKITA  Haruhisa ICHIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:12
      Page(s):
    1834-1841

    Backscatter wireless communications offer advantages such as batteryless operations, small form factor, and radio regulatory exemption sensors. The major challenge ahead of backscatter wireless communications is synchronized multicarrier data collection, which can be realized by rejecting mutual harmonics among backscatters. This paper analyzes the mutual interferences of digitally modulated multicarrier backscatter to find interferences from higher frequency subcarriers to lower frequency subcarriers, which do not take place in analog modulated multicarrier backscatters, is harmful for densely populated subcarriers. This reverse interference distorts the harmonics replica, deteriorating the performance of the existing method, which rejects mutual interference among subcarriers by 5dB processing gain. To solve this problem, this paper analyzes the relationship between subcarrier spacing and reverse interference, and reveals that an alternate channel spacing, with channel separation twice the bandwidth of a subcarrier, can provide reasonably dense subcarrier allocation and can alleviate reverse interference. The idea is examined with prototype sensors in a wired experiment and in an indoor propagation experiment. The results reveal that with alternate channel spacing, the reverse interference practically becomes negligible, and the existing interference rejection method achieves the original processing gain of 5dB with one hundredth packet error rate reduction.

  • Hybrid QAM-Based Labels Generated by Two Multi-Level PSK Codes

    Takahiro KODAMA  Gabriella CINCOTTI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2019/05/31
      Vol:
    E102-B No:12
      Page(s):
    2199-2204

    Hybrid 200Gchip/s QAM-based opto-electrical labels with high orthogonality are generated using the convolution of optical 16-level and electrical 4-level PSK codes. The combined simultaneous use of optical and electrical encoding increases system flexibility and code orthogonality, as well as code recognition performance. By performing 50 G-class low-speed LN-PM-based electrical processing on the 200 Gchip/s PSK-based optical code labels generated by a multiport optical encoder, the value of PCR indicating the code orthogonality is increased significantly, and the receiver sensitivity is improved by 0.5dB to achieve LER =10-9 in the next-generation optical packet switching networks.

  • Transferring Adaptive Bit Rate Streaming Quality Models from H.264/HD to H.265/4K-UHD Open Access

    Pierre LEBRETON  Kazuhisa YAMAGISHI  

     
    PAPER-Network

      Pubricized:
    2019/06/25
      Vol:
    E102-B No:12
      Page(s):
    2226-2242

    In this paper the quality of adaptive bit rate video streaming is investigated and two state-of-the-art models, i.e., the NTT audiovisual quality-estimation and ITU-T P.1203 models, are considered. This paper shows how these models can be applied to new conditions, e.g., 4K ultra high definition (4K-UHD) videos encoded using H.265, considering that they were originally designed and trained for HD videos encoded with H.264. Six subjective evaluations involving up to 192 participants and a large variety of test conditions, e.g., durations from 10sec to 3min, coding-quality variation, and stalling events, were conducted on both TV and mobile devices. Using the subjective data, this paper addresses how models and coefficients can be transferred to new conditions. A comparison between state-of-the-art models is conducted, showing the performance of transferred and retrained models. It is found that other video-quality estimation models, such as VMAF, can be used as input of the NTT and ITU-T P.1203 long-term pooling modules, allowing these other video-quality-estimation models to support the specificities of adaptive bit-rate-streaming scenarios. Finally, all retrained coefficients are detailed in this paper allowing future work to directly reuse the results of this study.

  • Matrix Completion ESPRIT for DOA Estimation Using Nonuniform Linear Array Open Access

    Hongbing LI  Qunfei ZHANG  Weike FENG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/06/17
      Vol:
    E102-B No:12
      Page(s):
    2253-2259

    A novel matrix completion ESPRIT (MC-ESPRIT) algorithm is proposed to estimate the direction of arrival (DOA) with nonuniform linear arrays (NLA). By exploiting the matrix completion theory and the characters of Hankel matrix, the received data matrix of an NLA is tranformed into a two-fold Hankel matrix, which is a treatable for matrix completion. Then the decision variable can be reconstructed by the inexact augmented Lagrange multiplier method. This approach yields a completed data matrix, which is the same as the data matrix of uniform linear array (ULA). Thus the ESPRIT-type algorithm can be used to estimate the DOA. The MC-ESPRIT could resolve more signals than the MUSIC-type algorithms with NLA. Furthermore, the proposed algorithm does not need to divide the field of view of the array compared to the existing virtual interpolated array ESPRIT (VIA-ESPRIT). Simulation results confirm the effectiveness of MC-ESPRIT.

  • Distributed Transmission for Secure Wireless Links Based on a Secret-Sharing Method

    Masaaki YAMANAKA  ShenCong WEI  Jingbo ZOU  Shuichi OHNO  Shinichi MIYAMOTO  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/06/17
      Vol:
    E102-B No:12
      Page(s):
    2286-2296

    This paper proposes a secure distributed transmission method that establishes multiple transmission routes in space to a destination. In the method, the transmitted information is divided into pieces of information by a secret-sharing method, and the generated pieces are separately transmitted to the destination through different transmission routes using individually-controlled antenna directivities. As the secret-sharing method can divide the transmitted information into pieces in such a manner that nothing about the original information is revealed unless all the divided pieces are obtained, the secrecy of the transmitted information is greatly improved from an information-theoretic basis. However, one problem is that it does not perform well in the vicinity around the receiver. This is due to the characteristics of distributed transmission that all distributed pieces of information must eventually gather at the destination; an eavesdropper can obtain the necessary pieces to reconstruct the original information. Then, this paper expands the distributed transmission method into a two-way communication scheme. By adopting the distributed transmission in both communication directions, a secure link can be provided as a feedback channel to enhance the secrecy of the transmitted information. The generation of the shared pieces of information is given with signal forms, and the secrecy of the proposed method is evaluated based on the signal transmission error rates as determined by computer simulation.

  • Characteristics and Applicability of Frequency Sharing Criteria in the Broadcasting Satellite Link Open Access

    Kazuyoshi SHOGEN  Thong PHAM VIET  

     
    PAPER-Satellite Communications

      Pubricized:
    2019/06/17
      Vol:
    E102-B No:12
      Page(s):
    2297-2303

    Two frequency sharing criteria for BSS (Broadcasting-Satellite Service) are enacted in Sect.1 of Annex 1 to Appendix 30 to Radio Regulations. These two criteria are pfd (power flux-density) and EPM (Equivalent Protection Margin) values. In this paper, the two criteria are compared and studied from the view point of applicability to the sharing cases between BSS and BSS. In particular, it is shown that in some cases, the EPM criterion contributes to alleviate the problem of “sensitive satellite network”, i.e., one that has relatively low transmission power and is very weak against interference and blocks the new satellite to enter. Disclaimer The views and positions expressed by the authors are strictly personal and do not constitute, nor can be interpreted as, the position of the International Telecommunication Union on the topics addressed in this paper.

  • Wireless Power Transfer in the Radiative Near-Field Using a Novel Reconfigurable Holographic Metasurface Aperture Open Access

    Wenyu LUO  

     
    LETTER-Power Transmission

      Vol:
    E102-A No:12
      Page(s):
    1928-1931

    In this letter, we propose a novel wireless power transfer (WPT) scheme in the radiative near-field (Fresnel) region, which based on machine vision and dynamically reconfigurable holographic metasurface aperture capable of focusing power to multiple spots simultaneously without any information feedback. The states of metamaterial elements, formed by tunable meander line resonators, is determined using holographic design principles, in which the interference pattern of reference mode and the desired radiated field pattern leads to the required phase distribution over the surface of the aperture. The three-dimensional position information of mobile point sources is determined by machine visual localization, which can be used to obtain the aperture field. In contrast to the existing research studies, the proposed scheme is not only designed to achieve free multi-focuses, but also with machine vision, low-dimensionality, high transmission efficiency, real-time continuous reconfigurability and so on. The accuracy of the analysis is confirmed using numerical simulation.

  • Sparse Time-Varying Complex AR (TV-CAR) Speech Analysis Based on Adaptive LASSO

    Keiichi FUNAKI  

     
    LETTER-Speech and Hearing

      Vol:
    E102-A No:12
      Page(s):
    1910-1914

    Linear Prediction (LP) analysis is commonly used in speech processing. LP is based on Auto-Regressive (AR) model and it estimates the AR model parameter from signals with l2-norm optimization. Recently, sparse estimation is paid attention since it can extract significant features from big data. The sparse estimation is realized by l1 or l0-norm optimization or regularization. Sparse LP analysis methods based on l1-norm optimization have been proposed. Since excitation of speech is not white Gaussian, a sparse LP estimation can estimate more accurate parameter than the conventional l2-norm based LP. These are time-invariant and real-valued analysis. We have been studied Time-Varying Complex AR (TV-CAR) analysis for an analytic signal and have evaluated the performance on speech processing. The TV-CAR methods are l2-norm methods. In this paper, we propose the sparse TV-CAR analysis based on adaptive LASSO (Least absolute shrinkage and selection operator) that is l1-norm regularization and evaluate the performance on F0 estimation of speech using IRAPT (Instantaneous RAPT). The experimental results show that the sparse TV-CAR methods perform better for a high level of additive Pink noise.

  • A Topology Control Strategy with Efficient Path for Predictable Delay-Tolerant Networks

    Dawei YAN  Cong LIU  Peng YOU  Shaowei YONG  Dongfang GUAN  Yu XING  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/06/25
      Vol:
    E102-B No:12
      Page(s):
    2183-2198

    In wireless networks, efficient topology improves the performance of network protocols. The previous research mainly focuses on how to construct a cost-efficient network structure from a static and connected topology. Due to lack of continuous connectivity in the underlying topology, most traditional topology control methods are not applicable to the delay or disruption tolerant networks (DTNs). In this paper, we consider the topology control problem in a predictable DTN where the dynamic topology is known a priori or can be predicted over time. First, this dynamic topology is modeled by a directed space-time graph that includes spatial and temporal information. Second, the topology control problem of the predictable DTN is formulated as building a sparse structure. For any pair devices, there is an efficient path connecting them to improve the efficiency of the generated structure. Then, a topology control strategy is proposed for this optimization problem by using a kth shortest paths algorithm. Finally, simulations are conducted on random networks and a real-world DTN tracing date. The results demonstrate that the proposed method can significantly improve the efficiency of the generated structure and reduce the total cost.

  • Frequency Divider Using One-Dimensional Tunnel-Diode Oscillator Lattice Systems

    Koichi NARAHARA  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2019/06/25
      Vol:
    E102-C No:12
      Page(s):
    845-848

    A one-dimensional lattice of tunnel-diode oscillators is investigated for potential high-speed frequency divider. In the evolution of the investigated lattice, the high-frequency oscillation dominates over the low-frequency oscillation. When a base oscillator is connected at the end, and generates oscillatory signals with a frequency higher than that of the synchronous lattice oscillation, the oscillator output begins to move in the lattice. This one-way property guarantees that the oscillation dynamics of the lattice have only slight influence on the oscillator motion. Moreover, counter-moving pulses in the lattice exhibit pair annihilation through head-on collisions. These lattice properties enable an efficient frequency division method. Herein, the operating principles of the frequency divider are described, along with a numerical validation.

  • Algebraic Group Structure of the Random Number Generator: Theoretical Analysis of NTU Sequence(s)

    Yuta KODERA  Md. Arshad ALI  Takeru MIYAZAKI  Takuya KUSAKA  Yasuyuki NOGAMI  Satoshi UEHARA  Robert H. MORELOS-ZARAGOZA  

     
    PAPER-Sequences

      Vol:
    E102-A No:12
      Page(s):
    1659-1667

    An algebraic group is an essential mathematical structure for current communication systems and information security technologies. Further, as a widely used technology underlying such systems, pseudorandom number generators have become an indispensable part of their construction. This paper focuses on a theoretical analysis for a series of pseudorandom sequences generated by a trace function and the Legendre symbol over an odd characteristic field. As a consequence, the authors give a theoretical proof that ensures a set of subsequences forms a group with a specific binary operation.

  • On-Chip Cache Architecture Exploiting Hybrid Memory Structures for Near-Threshold Computing

    Hongjie XU  Jun SHIOMI  Tohru ISHIHARA  Hidetoshi ONODERA  

     
    PAPER

      Vol:
    E102-A No:12
      Page(s):
    1741-1750

    This paper focuses on power-area trade-off axis to memory systems. Compared with the power-performance-area trade-off application on the traditional high performance cache, this paper focuses on the edge processing environment which is becoming more and more important in the Internet of Things (IoT) era. A new power-oriented trade-off is proposed for on-chip cache architecture. As a case study, this paper exploits a good energy efficiency of Standard-Cell Memory (SCM) operating in a near-threshold voltage region and a good area efficiency of Static Random Access Memory (SRAM). A hybrid 2-level on-chip cache structure is first introduced as a replacement of 6T-SRAM cache as L0 cache to save the energy consumption. This paper proposes a method for finding the best capacity combination for SCM and SRAM, which minimizes the energy consumption of the hybrid cache under a specific cache area constraint. The simulation result using a 65-nm process technology shows that up to 80% energy consumption is reduced without increasing the die area by replacing the conventional SRAM instruction cache with the hybrid 2-level cache. The result shows that energy consumption can be reduced if the area constraint for the proposed hybrid cache system is less than the area which is equivalent to a 8kB SRAM. If the target operating frequency is less than 100MHz, energy reduction can be achieved, which implies that the proposed cache system is suitable for low-power systems where a moderate processing speed is required.

  • A Low Area Overhead Design Method for High-Performance General-Synchronous Circuits with Speculative Execution

    Shimpei SATO  Eijiro SASSA  Yuta UKON  Atsushi TAKAHASHI  

     
    PAPER

      Vol:
    E102-A No:12
      Page(s):
    1760-1769

    In order to obtain high-performance circuits in advanced technology nodes, design methodology has to take the existence of large delay variations into account. Clock scheduling and speculative execution have overheads to realize them, but have potential to improve the performance by averaging the imbalance of maximum delay among paths and by utilizing valid data available earlier than worst-case scenarios, respectively. In this paper, we propose a high-performance digital circuit design method with speculative executions with less overhead by utilizing clock scheduling with delay insertions effectively. The necessity of speculations that cause overheads is effectively reduced by clock scheduling with delay insertion. Experiments show that a generated circuit achieves 26% performance improvement with 1.3% area overhead compared to a circuit without clock scheduling and without speculative execution.

  • Privacy-Preserving Support Vector Machine Computing Using Random Unitary Transformation

    Takahiro MAEKAWA  Ayana KAWAMURA  Takayuki NAKACHI  Hitoshi KIYA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1849-1855

    A privacy-preserving support vector machine (SVM) computing scheme is proposed in this paper. Cloud computing has been spreading in many fields. However, the cloud computing has some serious issues for end users, such as the unauthorized use of cloud services, data leaks, and privacy being compromised. Accordingly, we consider privacy-preserving SVM computing. We focus on protecting visual information of images by using a random unitary transformation. Some properties of the protected images are discussed. The proposed scheme enables us not only to protect images, but also to have the same performance as that of unprotected images even when using typical kernel functions such as the linear kernel, radial basis function (RBF) kernel and polynomial kernel. Moreover, it can be directly carried out by using well-known SVM algorithms, without preparing any algorithms specialized for secure SVM computing. In an experiment, the proposed scheme is applied to a face-based authentication algorithm with SVM classifiers to confirm the effectiveness.

  • Adaptive-Partial Template Update with Center-Shifting Recovery for High Frame Rate and Ultra-Low Delay Deformation Matching

    Songlin DU  Yuhao XU  Tingting HU  Takeshi IKENAGA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1872-1881

    High frame rate and ultra-low delay matching system plays an important role in various human-machine interactive applications, which demands better performance in matching deformable and out-of-plane rotating objects. Although many algorithms have been proposed for deformation tracking and matching, few of them are suitable for hardware implementation due to complicated operations and large time consumption. This paper proposes a hardware-oriented template update and recovery method for high frame rate and ultra-low delay deformation matching system. In the proposed method, the new template is generated in real time by partially updating the template descriptor and adding new keypoints simultaneously with the matching process in pixels (proposal #1), which avoids the large inter-frame delay. The size and shape of region of interest (ROI) are made flexible and the Hamming threshold used for brute-force matching is adjusted according to pixel position and the flexible ROI (proposal #2), which solves the problem of template drift. The template is recovered by the previous one with a relative center-shifting vector when it is judged as lost via region-wise difference check (proposal #3). Evaluation results indicate that the proposed method successfully achieves the real-time processing of 784fps at the resolution of 640×480 on field-programmable gate array (FPGA), with a delay of 0.808ms/frame, as well as achieves satisfactory deformation matching results in comparison with other general methods.

  • Representative Spatial Selection and Temporal Combination for 60fps Real-Time 3D Tracking of Twelve Volleyball Players on GPU

    Xina CHENG  Yiming ZHAO  Takeshi IKENAGA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1882-1890

    Real-time 3D players tracking plays an important role in sports analysis, especially for the live services of sports broadcasting, which have a strict limitation on processing time. For these kinds of applications, 3D trajectories of players contribute to high-level game analysis such as tactic analysis and commercial applications such as TV contents. Thus real-time implementation for 3D players tracking is expected. In order to achieve real-time for 60fps videos with high accuracy, (that means the processing time should be less than 16.67ms per frame), the factors that limit the processing time of target algorithm include: 1) Large image area of each player. 2) Repeated processing of multiple players in multiple views. 3) Complex calculation of observation algorithm. To deal with the above challenges, this paper proposes a representative spatial selection and temporal combination based real-time implementation for multi-view volleyball players tracking on the GPU device. First, the representative spatial pixel selection, which detects the pixels that mostly represent one image region to scale down the image spatially, reduces the number of processing pixels. Second, the representative temporal likelihood combination shares observation calculation by using the temporal correlation between images so that the times of complex calculation is reduced. The experiments are based on videos of the Final and Semi-Final Game of 2014 Japan Inter High School Games of Men's Volleyball in Tokyo Metropolitan Gymnasium. On the GPU device GeForce GTX 1080Ti, the tracking system achieves real-time on 60fps videos and keeps the tracking accuracy higher than 97%.

3541-3560hit(42807hit)