The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

5521-5540hit(42807hit)

  • Pitch Estimation and Voicing Classification Using Reconstructed Spectrum from MFCC

    JianFeng WU  HuiBin QIN  YongZhu HUA  LingYan FAN  

     
    LETTER-Speech and Hearing

      Pubricized:
    2017/11/15
      Vol:
    E101-D No:2
      Page(s):
    556-559

    In this paper, a novel method for pitch estimation and voicing classification is proposed using reconstructed spectrum from Mel-frequency cepstral coefficients (MFCC). The proposed algorithm reconstructs spectrum from MFCC with Moore-Penrose pseudo-inverse by Mel-scale weighting functions. The reconstructed spectrum is compressed and filtered in log-frequency. Pitch estimation is achieved by modeling the joint density of pitch frequency and the filter spectrum with Gaussian Mixture Model (GMM). Voicing classification is also achieved by GMM-based model, and the test results show that over 99% frames can be correctly classified. The results of pitch estimation demonstrate that the proposed GMM-based pitch estimator has high accuracy, and the relative error is 6.68% on TIMIT database.

  • End-to-End Exposure Fusion Using Convolutional Neural Network

    Jinhua WANG  Weiqiang WANG  Guangmei XU  Hongzhe LIU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/11/22
      Vol:
    E101-D No:2
      Page(s):
    560-563

    In this paper, we describe the direct learning of an end-to-end mapping between under-/over-exposed images and well-exposed images. The mapping is represented as a deep convolutional neural network (CNN) that takes multiple-exposure images as input and outputs a high-quality image. Our CNN has a lightweight structure, yet gives state-of-the-art fusion quality. Furthermore, we know that for a given pixel, the influence of the surrounding pixels gradually increases as the distance decreases. If the only pixels considered are those in the convolution kernel neighborhood, the final result will be affected. To overcome this problem, the size of the convolution kernel is often increased. However, this also increases the complexity of the network (too many parameters) and the training time. In this paper, we present a method in which a number of sub-images of the source image are obtained using the same CNN model, providing more neighborhood information for the convolution operation. Experimental results demonstrate that the proposed method achieves better performance in terms of both objective evaluation and visual quality.

  • Automatic Generation of Mixed Integer Programming for Scheduling Problems Based on Colored Timed Petri Nets

    Andrea Veronica PORCO  Ryosuke USHIJIMA  Morikazu NAKAMURA  

     
    LETTER

      Vol:
    E101-A No:2
      Page(s):
    367-372

    This paper proposes a scheme for automatic generation of mixed-integer programming problems for scheduling with multiple resources based on colored timed Petri nets. Our method reads Petri net data modeled by users, extracts the precedence and conflict relations among transitions, information on the available resources, and finally generates a mixed integer linear programming for exactly solving the target scheduling problem. The mathematical programing problems generated by our tool can be easily inputted to well-known optimizers. The results of this research can extend the usability of optimizers since our tool requires just simple rules of Petri nets but not deep mathematical knowledge.

  • Far-End Reactor Matching to a Traveling Load Along an RF Power Transmission Line

    Sonshu SAKIHARA  Satoshi KITABAYASHI  Naoki SAKAI  Takashi OHIRA  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    396-401

    This paper presents a novel circuit for impedance matching to a load moving along a transmission line. This system is called FERMAT: Far-End Reactor MATching. The FERMAT consists of a power transmission line and a variable reactor at its far-end. The proposed system moves standing-wave antinodes to the position of the vehicle in motion. Therefore, the moving vehicle can be fed well at any position on the line. As a theoretical result, we derive adjustable matching conditions in FERMAT. We verified that the experimental result well agrees with the theory.

  • Dual-Circularly Polarized Offset Parabolic Reflector Antenna with Microstrip Antenna Array for 12-GHz Band Satellite Broadcasting Reception

    Masafumi NAGASAKA  Susumu NAKAZAWA  Shoji TANAKA  

     
    PAPER-Antennas

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    340-348

    Japan Broadcasting Corporation (NHK) started test satellite broadcasting of ultra-high-definition television (UHDTV) on August 1st, 2016. The test broadcasting is being provided in the 12-GHz (11.7 to 12.75GHz) band with right-hand circular polarization. In 2018, left-hand circular polarization in the same frequency band will be used for satellite broadcasting of UHDTV. Because UHDTV satellite broadcasting uses the 16APSK modulation scheme, which requires a higher carrier-to-noise ratio than that used for HDTV in Japan, it is important to mitigate the cross-polarization interference. Therefore, we fabricated and tested a dual-circularly polarized offset parabolic reflector antenna that has a feed antenna composed of a 2×2 microstrip antenna array, which is sequentially rotated to enhance the polarization purity. Measured results showed that the fabricated antenna complied with our requirements, a voltage standing wave ratio of less than 1.4, antenna gain of 34.5dBi (i.e., the aperture efficiency was 69%), and cross-polarization discrimination of 28.7dB.

  • Comprehensive Analysis of the Impact of TWDP Fading on the Achievable Error Rate Performance of BPSK Signaling

    Donggu KIM  Hoojin LEE  Joonhyuk KANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    500-507

    To effectively analyze the influence of two-wave with diffuse power (TWDP) fading on the achievable error rate performance of binary phase-shift keying (BPSK) signaling, we derive two novel concise asymptotic closed-form bit error rate (BER) formulas. We perform asymptotic analysese based on existing exact and approximate BER formulas, which are obtained from the exact probability density function (PDF) or moment generating function (MGF), and the approximate PDF of TWDP fading. The derived asymptotic closed-form expressions yield explicit insights into the achievable error rate performance in TWDP fading environments. Furthermore, the absolute relative error (ARE) between the exact and approximate coding gains is investigated, from which we also propose a criterion for the order of an approximate PDF, which is more robust than the conventional criterion. Numerical results clearly demonstrate the accuracy of the derived asymptotic formulas, and also support our proposed criterion.

  • Passive-Filter-Configuration-Based Reduction of Up-to-Several-Hundred-MHz EMI Noises in H-Bridge PWM Micro-Stepping Motor Driver Circuits

    Keonil KANG  Kyung-Young JUNG  Sang Won NAM  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:2
      Page(s):
    104-111

    Recently, H-bridge pulse width modulation (PWM) micro-stepping motor drivers have been widely used for 3-D printers, robots, and medical instruments. Differently from a simple PWM motor driver circuit, the H-bridge PWM micro-stepping motor driver circuit can generate radio frequency (RF) electromagnetic interference (EMI) noises of up to several hundred MHz frequencies, due to digital interface circuits and a high-performance CPU. For medical instrument systems, the minimization of EMI noises can assure operating safety and greatly reduce the chance of malfunction between instruments. This work proposes a passive-filter configuration-based circuit design for reducing up-to-several-hundred-MHz EMI noises generated from the H-bridge PWM micro-stepping motor driver circuit. More specifically, the proposed RF EMI reduction approach consists of proper passive filter design, shielding in motor wires, and common ground design in the print circuit board. The proposed passive filter configuration design is validated through the overall reduction of EMI noises at RF band. Finally, the proposed EMI reduction approach is tested experientially through a prototype and about 16 dB average reduction of RF EMI noises is demonstrated.

  • Wideband Adaptive Beamforming Algorithm for Conformal Arrays Based on Sparse Covariance Matrix Reconstruction

    Pei CHEN  Dexiu HU  Yongjun ZHAO  Chengcheng LIU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    548-554

    Aiming at solving the performance degradation caused by the covariance matrix mismatch in wideband beamforming for conformal arrays, a novel adaptive beamforming algorithm is proposed in this paper. In this algorithm, the interference-plus-noise covariance matrix is firstly reconstructed to solve the desired signal contamination problem. Then, a sparse reconstruction method is utilized to reduce the high computational cost and the requirement of sampling data. A novel cost function is formulated by the focusing matrix and singular value decomposition. Finally, the optimization problem is efficiently solved in a second-order cone programming framework. Simulation results using a cylindrical array demonstrate the effectiveness and robustness of the proposed algorithm and prove that this algorithm can achieve superior performance over the existing wideband beamforming methods for conformal arrays.

  • Joint Information and Energy Packet Scheduling in Wireless Powered Sensor Network

    Sungbok LEE  Jaehyun PARK  Jonghyeok LEE  

     
    PAPER-Network

      Pubricized:
    2017/08/07
      Vol:
    E101-B No:2
      Page(s):
    520-527

    In this paper, we consider wireless powered sensor networks. In these networks, the energy access point (EAP) transmits the energy packets to the sensor nodes and then, the sensor nodes send their sensing data to the information access point (IAP) by exploiting the harvested energy. Because the sensor nodes have a limited information queue (data storage) and energy queue (battery), energy packet/data packet scheduling is important. Accordingly, to reduce the total energy required to support the associated sensor network and simultaneously avoid sensing data loss, the energy packet/data packet transmission periods are jointly optimized. Furthermore, analyses identify the optimal location of EAP which will yield energy-efficient wireless powered sensor networks. Through the computer simulations, the performance of the proposed packet scheduling and deployment policy is demonstrated.

  • Three Dimensional FPGA Architecture with Fewer TSVs

    Motoki AMAGASAKI  Masato IKEBE  Qian ZHAO  Masahiro IIDA  Toshinori SUEYOSHI  

     
    PAPER-Device and Architecture

      Pubricized:
    2017/11/17
      Vol:
    E101-D No:2
      Page(s):
    278-287

    Three-dimensional (3D) field-programmable gate arrays (FPGAs) are expected to offer higher logic density as well as improved delay and power performance by utilizing 3D integrated circuit technology. However, because through-silicon-vias (TSVs) for conventional 3D FPGA interlayer connections have a large area overhead, there is an inherent tradeoff between connectivity and small size. To find a balance between cost and performance, and to explore 3D FPGAs with realistic 3D integration processes, we propose two types of 3D FPGA and construct design tool sets for architecture exploration. In previous research, we created a TSV-free 3D FPGA with a face-down integration method; however, this was limited to two layers. In this paper, we discuss the face-up stacking of several face-down stacked FPGAs. To minimize the number of TSVs, we placed TSVs peripheral to the FPGAs for 3D-FPGA with 4 layers. According to our results, a 2-layer 3D FPGA has reasonable performance when limiting the design to two layers, but a 4-layer 3D FPGA is a better choice when area is emphasized.

  • FOREWORD

    Fumiaki MAEHARA  

     
    FOREWORD

      Vol:
    E101-A No:1
      Page(s):
    160-160
  • A Compact Matched Filter Bank for an Optical ZCZ Sequence Set with Zero-Correlation Zone 2z

    Yasuaki OHIRA  Takahiro MATSUMOTO  Hideyuki TORII  Yuta IDA  Shinya MATSUFUJI  

     
    LETTER

      Vol:
    E101-A No:1
      Page(s):
    195-198

    In this paper, we propose a new structure for a compact matched filter bank (MFB) for an optical zero-correlation zone (ZCZ) sequence set with Zcz=2z. The proposed MFB can reduces operation elements such as 2-input adders and delay elements. The number of 2-input adders decrease from O(N2) to O(N log2 N), delay elements decrease from O(N2) to O(N). In addition, the proposed MFBs for the sequence of length 32, 64, 128 and 256 with Zcz=2,4 and 8 are implemented on a field programmable gate array (FPGA). As a result, the numbers of logic elements (LEs) of the proposed MFBs for the sequences with Zcz=2 of length 32, 64, 128 and 256 are suppressed to about 76.2%, 84.2%, 89.7% and 93.4% compared to that of the conventional MFBs, respectively.

  • Changes of Evaluation Values on Component Rank Model by Taking Code Clones into Consideration

    Reishi YOKOMORI  Norihiro YOSHIDA  Masami NORO  Katsuro INOUE  

     
    PAPER-Software System

      Pubricized:
    2017/10/05
      Vol:
    E101-D No:1
      Page(s):
    130-141

    There are many software systems that have been used and maintained for a long time. By undergoing such a maintenance process, similar code fragments were intentionally left in the source code of such software, and knowing how to manage a software system that contains a lot of similar code fragments becomes a major concern. In this study, we proposed a method to pick up components that were commonly used in similar code fragments from a target software system. This method was realized by using the component rank model and by checking the differences of evaluation values for each component before and after merging components that had similar code fragments. In many cases, components whose evaluation value had decreased would be used by both the components that were merged, so we considered that these components were commonly used in similar code fragments. Based on the proposed approach, we implemented a system to calculate differences of evaluation values for each component, and conducted three evaluation experiments to confirm that our method was useful for detecting components that were commonly used in similar code fragments, and to confirm how our method can help developers when developers add similar components. Based on the experimental results, we also discuss some improvement methods and provide the results from applications of these methods.

  • A Simple and Effective Generalization of Exponential Matrix Discriminant Analysis and Its Application to Face Recognition

    Ruisheng RAN  Bin FANG  Xuegang WU  Shougui ZHANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2017/10/18
      Vol:
    E101-D No:1
      Page(s):
    265-268

    As an effective method, exponential discriminant analysis (EDA) has been proposed and widely used to solve the so-called small-sample-size (SSS) problem. In this paper, a simple and effective generalization of EDA is presented and named as GEDA. In GEDA, a general exponential function, where the base of exponential function is larger than the Euler number, is used. Due to the property of general exponential function, the distance between samples belonging to different classes is larger than that of EDA, and then the discrimination property is largely emphasized. The experiment results on the Extended Yale and CMU-PIE face databases show that, GEDA gets more advantageous recognition performance compared to EDA.

  • Statistical Property Guided Feature Extraction for Volume Data

    Li WANG  Xiaoan TANG  Junda ZHANG  Dongdong GUAN  

     
    LETTER-Pattern Recognition

      Pubricized:
    2017/10/13
      Vol:
    E101-D No:1
      Page(s):
    261-264

    Feature visualization is of great significances in volume visualization, and feature extraction has been becoming extremely popular in feature visualization. While precise definition of features is usually absent which makes the extraction difficult. This paper employs probability density function (PDF) as statistical property, and proposes a statistical property guided approach to extract features for volume data. Basing on feature matching, it combines simple liner iterative cluster (SLIC) with Gaussian mixture model (GMM), and could do extraction without accurate feature definition. Further, GMM is paired with a normality test to reduce time cost and storage requirement. We demonstrate its applicability and superiority by successfully applying it on homogeneous and non-homogeneous features.

  • Wideband Rectangular Antenna Fed Sideways from a Ground Plate

    Kyoichi IIGUSA  Hirokazu SAWADA  Fumihide KOJIMA  Hiroshi HARADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/07/10
      Vol:
    E101-B No:1
      Page(s):
    176-184

    We propose a wideband antenna that has both vertical and horizontal polarization to create access points with enhanced connectivity. The antenna is composed of a rectangular plate and a ground plate, and the rectangular plate is fed sideways from the ground plate. Its -10dB fractional bandwidth is approximately 162%. It is shown that the offset feed of the rectangular plate is important to attain wideband impedance matching and vertical polarized wave. The results of a parametric study to characterize the first- and second-lowest resonant frequencies are presented. Moreover, the behavior of the impedance matching and polarization is interpreted by dividing the current distribution around the feed port on the rectangular plate into the same direction current mode and the opposite direction current mode. The measured results for the return loss and the radiation pattern of a prototype antenna agree well with the simulation results, therefore the wideband property was experimentally confirmed.

  • Performance Analysis of Content-Centric Networking on an Arbitrary Network Topology

    Ryo NAKAMURA  Hiroyuki OHSAKI  

     
    PAPER

      Pubricized:
    2017/07/05
      Vol:
    E101-B No:1
      Page(s):
    24-34

    In this paper, we use the MCA (Multi-Cache Approximation) algorithm to numerically determine cache hit probability in a multi-cache network. We then analytically obtain performance metrics for Content-Centric networking (CCN). Our analytical model contains multiple routers, multiple repositories (e.g., storage servers), and multiple entities (e.g., clients). We obtain three performance metrics: content delivery delay (i.e., the average time required for an entity to retrieve a content through a neighboring router), throughput (i.e., number of contents delivered from an entity per unit of time), and availability (i.e., probability that an entity can successfully retrieve a content from a network). Through several numerical examples, we investigate how network topology affects the performance of CCN. A notable finding is that content caching becomes more beneficial in terms of content delivery time and availability (resp., throughput) as distance between the entity and the requesting repository narrows (resp., widens).

  • Two-Layer Lossless Coding for High Dynamic Range Images Based on Range Compression and Adaptive Inverse Tone-Mapping

    Taichi YOSHIDA  Masahiro IWAHASHI  Hitoshi KIYA  

     
    PAPER-Coding Theory

      Vol:
    E101-A No:1
      Page(s):
    259-266

    In this paper, we propose a 2-layer lossless coding method for high dynamic range (HDR) images based on range compression and adaptive inverse tone-mapping. Recently, HDR images, which have a wider range of luminance than conventional low dynamic range (LDR) ones, have been frequently used in various fields. Since commonly used devices cannot yet display HDR images, 2-layer coding methods that decode not only HDR images but also their LDR versions have been proposed. We have previously proposed a state-of-the-art 2-layer lossless coding method for HDR images that unfortunately has huge HDR file size. Hence, we introduce two ideas to reduce the HDR file size to less than that of the previous method. The proposed method achieves high compression ratio and experiments show that it outperforms the previous method and other conventional methods.

  • BiometricJammer: Method to Prevent Acquisition of Biometric Information by Surreptitious Photography on Fingerprints Open Access

    Isao ECHIZEN  Tateo OGANE  

     
    INVITED PAPER

      Pubricized:
    2017/10/16
      Vol:
    E101-D No:1
      Page(s):
    2-12

    Advances in fingerprint authentication technology have led to it being used in a growing range of personal devices such as PCs and smartphones. However, they have also made it possible to capture fingerprints remotely with a digital camera, putting the target person at risk of illegal log-ins and identity theft. This article shows how fingerprint captured in this manner can be authenticated and how people can protect their fingerprints against surreptitious photography. First we show that photographed fingerprints have enough information to spoof fingerprint authentication systems by demonstrating with “fake fingers” made from such photographs. Then we present a method that defeats the use of surreptitious photography without preventing the use of legitimate fingerprint authentication devices. Finally, we demonstrate that an implementation of the proposed method called “BiometricJammer,” a wearable device put on a fingertip, can effectively prevent the illegal acquisition of fingerprints by surreptitious photography while still enabling contact-based fingerprint sensors to respond normally.

  • Concurrency Control Protocol for Parallel B-Tree Structures That Improves the Efficiency of Request Transfers and SMOs within a Node

    Tomohiro YOSHIHARA  Dai KOBAYASHI  Haruo YOKOTA  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2017/10/18
      Vol:
    E101-D No:1
      Page(s):
    152-170

    Many concurrency control protocols for B-trees use latch-coupling because its execution is efficient on a single machine. Some studies have indicated that latch-coupling may involve a performance bottleneck when using multicore processors in a shared-everything environment, but no studies have considered the possible performance bottleneck caused by sending messages between processing elements (PEs) in shared-nothing environments. We propose two new concurrency control protocols, “LCFB” and “LCFB-link”, which require no latch-coupling in optimistic processes. The LCFB-link also innovates B-link approach within each PE to reduce the cost of modifications in the PE, as a solution to the difficulty of consistency management for the side pointers in a parallel B-tree. The B-link algorithm is well known as a protocol without latch-coupling, but B-link has the difficulty of guaranteeing the consistency of the side pointers in a parallel B-tree. Experimental results in various environments indicated that the system throughput of the proposed protocols was always superior to those of the conventional protocols, particularly in large-scale configurations, and using LCFB-link was effective for higher update ratios. In addition, to mitigate access skew, data should migrate between PEs. We have demonstrated that our protocols always improve the system throughput and are effective as concurrency controls for data migration.

5521-5540hit(42807hit)