The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

6801-6820hit(42807hit)

  • A Mobility-Based Cell Association Algorithm for Load Balancing in a Heterogeneous Network

    Janghoon YANG  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E100-A No:1
      Page(s):
    335-340

    By installing the various types of cells, imbalance in traffic load and excessive handover among cells in a heterogenous network can be prevalent. To deal with this problem, we propose a mobility-based cell association algorithm for load balancing in a heterogenous network. By defining a dynamic system load as a function of the mobility of mobile stations (MSs) and the transmit powers of cells, the proposed algorithm is designed such that it can optimize a utility function based on the fairness of the dynamic system load. Simulation results verify that the proposed algorithm improves the user perceived rate of MSs located at cell edges with slight increase in the number of handovers compared to a conventional cell association based on received signal strength.

  • Increase of Recognizable Label Number with Optical Passive Waveguide Circuits for Recognition of Encoded 4- and 8-Bit BPSK Labels

    Hiroki KISHIKAWA  Akito IHARA  Nobuo GOTO  Shin-ichiro YANAGIYA  

     
    PAPER-Optoelectronics

      Vol:
    E100-C No:1
      Page(s):
    84-93

    Optical label processing is expected to reduce power consumption in label switching network nodes. Previously, we proposed passive waveguide circuits for the recognition of BPSK labels with a theoretically infinite contrast ratio. The recognizable label number was limited to four and eight for 4-bit and 8-bit BPSK labels, respectively. In this paper, we propose methods to increase the recognizable label number. The proposed circuits can recognize eight and sixteen labels of 4-bit BPSK codes with a contrast ratio of 4.00 and 2.78, respectively. As 8-bit BSPK codes, 64, 128, and 256 labels can be recognized with a contrast ratio of 4.00, 2.78, and 1.65, respectively. In recognition of all encoded labels, that is, 16 and 256 labels for 4-bit and 8-bit BPSK labels, a reference signal is employed to identify the sign of the optical output signals. The effect of phase deviation and loss along the optical waveguides of the devices is also discussed.

  • Improvement of Artificial Auscultation on Hemodialysis Stenosis by the Estimate of Stenosis Site and the Hierarchical Categorization of Learning Data

    Hatsuhiro KATO  Masakazu KIRYU  Yutaka SUZUKI  Osamu SAKATA  Mizuya FUKASAWA  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E100-D No:1
      Page(s):
    175-180

    Many hemodialysis patients undergo plasitc surgery to form the arterio-venous fistula (AVF) in their forearm to improve the vascular access by shunting blood flows. The issue of AVF is the stenosis caused by the disturbance of blood flows; therefore the auscultation system to assist the stenosis diagnosis has been developed. Although the system is intended to be used as a steady monitoring for stenosis assessment, its efficiency was not always high because it cannot estimate where the stenosis locates. In this study, for extracting and estimating the stenosis signal, the shunt murmurs captured by many microphones were decomposed by the principal component analysis (PCA). Furthermore, applying the hierarchical categorization of the recursive subdivision self-organizing map (rs-SOM), the modelling of the stenosis signal was proposed to realise the effective stenosis assessment. The false-positive rate of the stenosis assessment was significantly reduced by using the improved auscultation system.

  • Using a Single Dendritic Neuron to Forecast Tourist Arrivals to Japan

    Wei CHEN  Jian SUN  Shangce GAO  Jiu-Jun CHENG  Jiahai WANG  Yuki TODO  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2016/10/18
      Vol:
    E100-D No:1
      Page(s):
    190-202

    With the fast growth of the international tourism industry, it has been a challenge to forecast the tourism demand in the international tourism market. Traditional forecasting methods usually suffer from the prediction accuracy problem due to the high volatility, irregular movements and non-stationarity of the tourist time series. In this study, a novel single dendritic neuron model (SDNM) is proposed to perform the tourism demand forecasting. First, we use a phase space reconstruction to analyze the characteristics of the tourism and reconstruct the time series into proper phase space points. Then, the maximum Lyapunov exponent is employed to identify the chaotic properties of time series which is used to determine the limit of prediction. Finally, we use SDNM to make a short-term prediction. Experimental results of the forecasting of the monthly foreign tourist arrivals to Japan indicate that the proposed SDNM is more efficient and accurate than other neural networks including the multi-layered perceptron, the neuro-fuzzy inference system, the Elman network, and the single multiplicative neuron model.

  • Broadcast Network-Based Sender Based Message Logging for Overcoming Multiple Failures

    Jinho AHN  

     
    LETTER-Dependable Computing

      Pubricized:
    2016/10/18
      Vol:
    E100-D No:1
      Page(s):
    206-210

    All the existing sender-based message logging (SBML) protocols share a well-known limitation that they cannot tolerate concurrent failures. In this paper, we analyze the cause for this limitation in a unicast network environment, and present an enhanced SBML protocol to overcome this shortcoming while preserving the strengths of SBML. When the processes on different nodes execute a distributed application together in a broadcast network, this new protocol replicates the log information of each message to volatile storages of other processes within the same broadcast network. It may reduce the communication overhead for the log replication by taking advantage of the broadcast nature of the network. Simulation results show our protocol performs better than the traditional one modified to tolerate concurrent failures in terms of failure-free execution time regardless of distributed application communication pattern.

  • Online Unit Clustering with Capacity Constraints

    Tetsuya ARAKI  Koji M. KOBAYASHI  

     
    LETTER-Algorithms and Data Structures

      Vol:
    E100-A No:1
      Page(s):
    301-303

    The online unit clustering problem is one of the most basic clustering problems proposed by Chan and Zarrabi-Zadeh (WAOA2007 and Theory of Computing Systems 45(3), 2009). Several variants of this problem have been extensively studied. In this letter, we propose a new variant of the online unit clustering problem, called the online unit clustering problem with capacity constraints. For this problem, we use competitive analysis to evaluate the performance of an online algorithm. Then, we develop an online algorithm whose competitive ratio is at most 3.178, and show that a lower bound on the competitive ratio of any online algorithm is 2.

  • FOREWORD Open Access

    Akira TAKAHASHI  

     
    FOREWORD

      Vol:
    E100-B No:1
      Page(s):
    1-1
  • Design, Analysis and Implementation of Pulse Generator by CMOS Flipped on Glass for Low Power UWB-IR

    Parit KANJANAVIROJKUL  Nguyen NGOC MAI-KHANH  Tetsuya IIZUKA  Toru NAKURA  Kunihiro ASADA  

     
    PAPER

      Vol:
    E100-A No:1
      Page(s):
    200-209

    This paper discusses a pulse generator implemented by CMOS flipped on a glass substrate aiming at low power applications with low duty cycle. The pulse generator is theoretically possible to generate a pulse at a frequency near and beyond Fmax. It also features a quick starting time and zero stand-by power. By using a simplified circuit model, analytical expressions for Q factor, energy conversion efficiency, output energy, and oscillation frequency of the pulse generator are derived. Pulse generator prototypes are designed on a 0.18 μm CMOS chip flipped over a transmission line resonator on a glass substrate. Measurement results of two different prototypes confirm the feasibility of the proposed circuit and the analytical model.

  • Light Space Partitioned Shadow Maps

    Bin TANG  Jianxin LUO  Guiqiang NI  Weiwei DUAN  Yi GAO  

     
    LETTER-Computer Graphics

      Pubricized:
    2016/10/04
      Vol:
    E100-D No:1
      Page(s):
    234-237

    This letter proposes a Light Space Partitioned Shadow Maps (LSPSMs) algorithm which implements shadow rendering based on a novel partitioning scheme in light space. In stead of splitting the view frustum like traditional Z-partitioning methods, we split partitions from the projection of refined view frustum in light space. The partitioning scheme is performed dual-directionally while limiting the wasted space. Partitions are created in dynamic number corresponding to the light and view directions. Experiments demonstrate that high quality shadows can be rendered in high efficiency with our algorithm.

  • FDTD Method as a Counterpart of Ray-Tracing Method to Analyze Radio Wave Propagation

    Suguru IMAI  Kenji TAGUCHI  Tatsuya KASHIWA  

     
    PAPER

      Vol:
    E100-C No:1
      Page(s):
    68-74

    Recently, computer speed and memory capacity have been advanced. Therefore, applicable space size or equivalently the frequency in the FDTD method has been increased similar as the ray-tracing method for radio wave propagation. The ray-tracing method can obtain easily important parameters such as path loss, delay profile and angular profile. On the other hand, the FDTD method seems difficult to obtain an angular profile. We can overcome this problem by applying the DOA estimation method to the FDTD method. In this paper, we show that the FDTD method can be used as a counterpart of the ray-tracing method to analyze radio wave propagation of large space by using DOA estimation method such as MUSIC method.

  • Multi-Divisible On-Line/Off-Line Encryptions

    Dan YAMAMOTO  Wakaha OGATA  

     
    PAPER

      Vol:
    E100-A No:1
      Page(s):
    91-102

    We present a new notion of public-key encryption, called multi-divisible on-line/off-line encryptions, in which partial ciphertexts can be computed and made publicly available for the recipients before the recipients' public key and/or the plaintexts are determined. We formalize its syntax and define several security notions with regard to the level of divisibility, the number of users, and the number of encryption (challenge) queries per user. Furthermore, we show implications and separations between these security notions and classify them into three categories. We also present concrete multi-divisible on-line/off-line encryption schemes. The schemes allow the computationally-restricted and/or bandwidth-restricted devices to transmit ciphertexts with low computational overhead and/or low-bandwidth network.

  • Computationally Secure Verifiable Secret Sharing Scheme for Distributing Many Secrets

    Wakaha OGATA  Toshinori ARAKI  

     
    PAPER

      Vol:
    E100-A No:1
      Page(s):
    103-114

    Many researchers studied computationally-secure (verifiable) secret sharing schemes which distribute multiple secrets with a bulletin board. However, the security definition is ambiguous in many of the past articles. In this paper, we first review existing schemes based on formal definitions of indistinguishability of secrets, verifiability of consistency, and cheater-detectability. And then, we propose a new secret sharing scheme which is the first scheme with indistinguishability of secrets, verifiability, and cheater-detectability, and allows to share secrets with arbitrary access structures. Further, our scheme is provably secure under well known computational assumptions.

  • Another Fuzzy Anomaly Detection System Based on Ant Clustering Algorithm

    Muhamad Erza AMINANTO  HakJu KIM  Kyung-Min KIM  Kwangjo KIM  

     
    PAPER

      Vol:
    E100-A No:1
      Page(s):
    176-183

    Attacks against computer networks are evolving rapidly. Conventional intrusion detection system based on pattern matching and static signatures have a significant limitation since the signature database should be updated frequently. The unsupervised learning algorithm can overcome this limitation. Ant Clustering Algorithm (ACA) is a popular unsupervised learning algorithm to classify data into different categories. However, ACA needs to be complemented with other algorithms for the classification process. In this paper, we present a fuzzy anomaly detection system that works in two phases. In the first phase, the training phase, we propose ACA to determine clusters. In the second phase, the classification phase, we exploit a fuzzy approach by the combination of two distance-based methods to detect anomalies in new monitored data. We validate our hybrid approach using the KDD Cup'99 dataset. The results indicate that, compared to several traditional and new techniques, the proposed hybrid approach achieves higher detection rate and lower false positive rate.

  • A 8 Phases 192MHz Crystal-Less Clock Generator with PVT Calibration

    Ting-Chou LU  Ming-Dou KER  Hsiao-Wen ZAN  Jen-Chieh LIU  Yu LEE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E100-A No:1
      Page(s):
    275-282

    A multi-phase crystal-less clock generator (MPCLCG) with a process-voltage-temperature (PVT) calibration circuit is proposed. It operates at 192 MHz with 8 phases outputs, and is implemented as a 0.18µm CMOS process for digital power management systems. A temperature calibrated circuit is proposed to align operational frequency under process and supply voltage variations. It occupies an area of 65µm × 75µm and consumes 1.1mW with the power supply of 1.8V. Temperature coefficient (TC) is 69.5ppm/°C from 0 to 100°C, and 2-point calibration is applied to calibrate PVT variation. The measured period jitter is a 4.58-ps RMS jitter and a 34.55-ps peak-to-peak jitter (P2P jitter) at 192MHz within 12.67k-hits. At 192MHz, it shows a 1-MHz-offset phase noise of -102dBc/Hz. Phase to phase errors and duty cycle errors are less than 5.5% and 4.3%, respectively.

  • A Novel Compressed Sensing-Based Channel Estimation Method for OFDM System

    Liping XIAO  Zhibo LIANG  Kai LIU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E100-A No:1
      Page(s):
    322-326

    Mutipath matching pursuit (MMP) is a new reconstruction algorithm based on compressed sensing (CS). In this letter, we applied the MMP algorithm to channel estimation in orthogonal frequency division multiplexing (OFDM) communication systems, and then proposed an improved MMP algorithm. The improved method adjusted the number of children generated by candidates. It can greatly reduce the complexity. The simulation results demonstrate that the improved method can reduce the running time under the premise of guaranteeing the performance of channel estimation.

  • HSI Color Space with Same Gamut of RGB Color Space

    Minako KAMIYAMA  Akira TAGUCHI  

     
    LETTER-Image

      Vol:
    E100-A No:1
      Page(s):
    341-344

    In color image processing, hue-preserving is necessary for human being. In order to preserve the hue component, the perceptual color spaces such as HSI and HSV were used for the color image processing. The Hue-Saturation-Intensity (HSI) color space is important for color image processing and many color applications are commonly based on this color space. However, the gamut of conventional HSI color space is larger than that of RGB color space. Thus, the gamut problem is often occurred after the processing intensity and saturation in the HSI color space. In this paper, a new HSI color space with completely same gamut of RGB color space is developed. The gamut problem is solved by the proposed HSI color space.

  • Semantic Motion Signature for Segmentation of High Speed Large Displacement Objects

    Yinhui ZHANG  Zifen HE  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2016/10/05
      Vol:
    E100-D No:1
      Page(s):
    220-224

    This paper presents a novel method for unsupervised segmentation of objects with large displacements in high speed video sequences. Our general framework introduces a new foreground object predicting method that finds object hypotheses by encoding both spatial and temporal features via a semantic motion signature scheme. More specifically, temporal cues of object hypotheses are captured by the motion signature proposed in this paper, which is derived from sparse saliency representation imposed on magnitude of optical flow field. We integrate semantic scores derived from deep networks with location priors that allows us to directly estimate appearance potentials of foreground hypotheses. A unified MRF energy functional is proposed to simultaneously incorporate the information from the motion signature and semantic prediction features. The functional enforces both spatial and temporal consistency and impose appearance constancy and spatio-temporal smoothness constraints directly on the object hypotheses. It inherently handles the challenges of segmenting ambiguous objects with large displacements in high speed videos. Our experiments on video object segmentation benchmarks demonstrate the effectiveness of the proposed method for segmenting high speed objects despite the complicated scene dynamics and large displacements.

  • A Hierarchical Opportunistic Routing with Moderate Clustering for Ad Hoc Networks

    Ryo YAMAMOTO  Satoshi OHZAHATA  Toshihiko KATO  

     
    PAPER-Network

      Vol:
    E100-B No:1
      Page(s):
    54-66

    The self-organizing nature of ad hoc networks is a good aspect in that terminals are not dependent on any infrastructure, that is, networks can be formed with decentralized and autonomous manner according to communication demand. However, this characteristic might affect the performance in terms of stability, reliability and so forth. Moreover, ad hoc networks face a scalability problem, which arise when the number of terminals in a network increases or a physical network domain expands, due to the network capacity limitation caused by the decentralized and the autonomous manner. Regarding this problem, some hierarchical and cluster-based routings have been proposed to effectively manage the networks. In this paper, we apply the concept of hierarchical routing and clustering to opportunistic routing, which can forward packets without using any pre-established path to achieve a path diversity gain with greater reachability. The simulation results show that the proposed method can achieve 11% higher reliability with a reasonable end-to-end delay in dense environments and 30% higher in large-scale networks.

  • Resource Allocation Method of Service Chaining for Guaranteeing Minimum Bandwidth and High Resource Utilization

    Hirofumi YAMAZAKI  Konomi MOCHIZUKI  Shunsuke HOMMA  Koji SUGISONO  Masaaki OMOTANI  

     
    PAPER-Network

      Pubricized:
    2016/07/19
      Vol:
    E100-B No:1
      Page(s):
    98-109

    Service chaining (SC) is a method for realizing a service by transferring flows among several service functions (SFs) that process packets. A route among SFs is called a service path (SP). Service chaining is being developed to reduce costs, increase flexibility, and shorten time-to-market. SC technologies are expected to be applied to carrier networks so that large communication carriers benefit from them. We assume that SPs process the traffic of services that treat all users in the same way such as an Internet access service for home users. An SP processes flows from several users. We do not assume that each SP is assigned to a user. Because a carrier network accommodates many users, each service will be heavily utilized. Therefore, it is assumed that the amount of traffic of a service is larger than the resource of an SF apparatus. Several SPs are required to process the traffic. SPs are supposed to meet two requirements. One is guaranteeing minimum bandwidth. The other is reducing the number of SF apparatuses, i.e., high resource utilization. Resource utilization depends on the combination of the resource quantities of SF apparatuses. Network operators have to determine the bandwidth of each SP within the range from the minimum bandwidth to the resource quantities of SF apparatuses to maximize resource utilization. Methods for determining the bandwidth of each SP have not been proposed for meeting the two requirements. Therefore, we propose a resource allocation method for this purpose. The proposed method determines the bandwidth of each SP on the basis of the combination of the resource quantities of SF apparatuses for guaranteeing the minimum bandwidth and maximizing resource utilization and allocates necessary resources to each SP. We also evaluate the proposed method and confirm that it can guarantee the minimum bandwidth of SPs and achieve high resource utilization regardless of the combination of the resource quantities of SF apparatuses. Although SF apparatuses are generally produced without considering the combinations of resource quantities of SF apparatuses in SPs, the proposed method can provide more options for selecting SF apparatuses.

  • Alignment Control System Using Beam-Tilting 1-D Waveguide-Slot Array Antennas for 120-GHz-Band Corporate-Feed High-Gain 2-D Arrays

    Akihiko HIRATA  Jun TAKEUCHI  Keisuke HASHIMOTO  Jiro HIROKAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/07/29
      Vol:
    E100-B No:1
      Page(s):
    158-166

    An alignment control system using beam-tilting 1-D arrays for a 120-GHz-band corporate-feed 2-D waveguide-slot array antenna is presented. The 2-D waveguide-slot array antenna transmits data, and the 1-D arrays are used to determine array alignment. We design two types of 1-D array antenna and fabricate a corporate-feed 2-D waveguide-slot array antenna surrounded by four beam-tilting 1-D arrays. We then construct an alignment control system and evaluate the performance of the control. We find that the angular accuracy of the antenna alignment control was within ±1deg.

6801-6820hit(42807hit)