The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

6721-6740hit(42807hit)

  • Asymmetric ZCZ Sequence Sets with Inter-Subset Uncorrelated Sequences via Interleaved Technique

    Longye WANG  Xiaoli ZENG  Hong WEN  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E100-A No:2
      Page(s):
    751-756

    An uncorrelated asymmetric ZCZ (UA-ZCZ) sequence set is a special version of an asymmetric ZCZ (A-ZCZ) sequence set, which contains multiple subsets and each subset is a typical ZCZ sequence set. One of the most important properties of UA-ZCZ sequnence set is that two arbitrary sequences from different sequence subsets are uncorrelated sequences, whose cross-correlation function (CCF) is zeros at all shifts. Based on interleaved technique and an uncorrelated sequence set, a new UA-ZCZ sequence set is obtained via interleaving a perfect sequence. The uncorrelated property of the UA-ZCZ sequence sets is expected to be useful for avoiding inter-cell interference of QS-CDMA systems.

  • Simultaneous Optimal Design Method of Primary Radiator and Main Reflector for Shaped Beam Antennas

    Takashi TOMURA  Michio TAKIKAWA  Yoshio INASAWA  Hiroaki MIYASHITA  

     
    PAPER

      Vol:
    E100-B No:2
      Page(s):
    211-218

    Shaped beam reflector antennas are widely used because they can achieve a shaped beam even with a single primary feed. Because coverage shapes depend on service areas, optimum primary radiators and reflector shapes are determined by the service areas. In this paper, we propose a simultaneous optimal design method of the primary radiator and reflector for the shaped beam antenna. Particle swarm optimization and the conjugate gradient method are adopted to optimize the primary radiator and reflector. The design method is applied to Japan coverage to verify its effectiveness.

  • Path Loss Model for Outdoor-to-Indoor Corridor Up to 40GHz Band in Microcell Environments

    Minoru INOMATA  Motoharu SASAKI  Wataru YAMADA  Takeshi ONIZAWA  Masashi NAKATSUGAWA  Nobutaka OMAKI  Koshiro KITAO  Tetsuro IMAI  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E100-B No:2
      Page(s):
    242-251

    This paper proposed that a path loss model for outdoor-to-indoor corridor is presented to construct next generation mobile communication systems. The proposed model covers the frequency range of millimeter wave bands up to 40GHz and provides three dimensional incident angle characteristics. Analysis of path loss characteristics is conducted by ray tracing. We clarify that the paths reflected multiple times between the external walls of buildings and then diffracted into one of the buildings are dominant. Moreover, we also clarify how the paths affect the path loss dependence on frequency and three dimensional incident angle. Therefore, by taking these dependencies into consideration, the proposed model decreases the root mean square errors of prediction results to within about 2 to 6dB in bands up to 40GHz.

  • Multi-Beam Massive MIMO Using Constant Modulus Algorithm for QAM Signals Employing Amplitude and Phase Offset Compensation

    Ryotaro TANIGUCHI  Kentaro NISHIMORI  Hideo MAKINO  

     
    PAPER

      Vol:
    E100-B No:2
      Page(s):
    262-268

    Massive MIMO transmission, whose number of antennas is much larger than the number of user terminals, has been attracted much attention as one of key technologies in next-generation mobile communication system because it enables improvement in service area and interference mitigation by simple signal processing. Multi-beam massive MIMO has proposed that utilizes the beam selection with high power in analog part and blind algorithm such as constant modulus algorithm (CMA) which does not need channel state information (CSI) is applied in digital part. Proposed configuration obtains high transmission efficiency. We have evaluated QPSK signals because the CMA basically focuses on the constant amplitude modulation. In this paper, in order to achieve the further higher transmission rate, the amplitude and phase compensation scheme is proposed when using the CMA with amplitude and phase modulation scheme such as QAM. The effectiveness of proposed method is verified by the computer simulation.

  • Dynamic Ant Colony Optimization for Routing in Mobile Content Oriented Networks

    Shintaro MANOME  Takuya ASAKA  

     
    PAPER-Network

      Pubricized:
    2016/08/17
      Vol:
    E100-B No:2
      Page(s):
    304-312

    A huge amount of content exists on the Internet, and contents from mobile devices are also present. Growth of the Internet of Things (IoT) is further accelerating this trend. Content oriented networks have been proposed as a new network architecture that conducts routing using the content's ID instead of an IP address. Content queries are routed on the content name itself instead of a destination address in these content oriented networks. When the content from a mobile device moves somewhere else, all the routing tables are generally re-created with the movement information that the mobile device sends. However, a routing scheme that uses ant colony optimization has attracted attention for supporting this process, but this optimization has a problem in that it cannot cope with moving contents and users sufficiently. In this paper, we propose a scheme that can cope with moving contents sources and users that require contents by using pheromones that are laid by these moving mobile devices. This proposed scheme can be applied to case of not only moving content sources but also the moving request users. Moreover, we conduct simulations to evaluate the performance of the proposed scheme.

  • Bufferbloat Avoidance with Frame-Dropping Threshold Notification in Ring Aggregation Networks

    Yu NAKAYAMA  Kaoru SEZAKI  

     
    PAPER-Network

      Pubricized:
    2016/08/22
      Vol:
    E100-B No:2
      Page(s):
    313-322

    In recent years, the reduced cost and increased capacity of memory have resulted in a growing number of buffers in switches and routers. Consequently, today's networks suffer from bufferbloat, a term that refers to excess frame buffering resulting in high latency, high jitter, and low throughput. Although ring aggregation is an efficient topology for forwarding traffic from multiple, widely deployed user nodes to a core network, a fairness scheme is needed to achieve throughput fairness and avoid bufferbloat, because frames are forwarded along ring nodes. N Rate N+1 Color Marking (NRN+1CM) was proposed to achieve per-flow fairness in ring aggregation networks. The key idea of NRN+1CM is to assign a color that indicates the dropping priority of a frame according to the flow-input rate. When congestion occurs, frames are selectively discarded based on their color and the frame-dropping threshold. Through the notification process for the frame-dropping threshold, frames are discarded at upstream nodes in advance, avoiding the accumulation of a queuing delay. The performance of NRN+1CM was analyzed theoretically and evaluated with computer simulations. However, its ability to avoid bufferbloat has not yet been proven mathematically. This paper uses an M(n)/M/1/K queue model to demonstrate how bufferbloat is avoided with NRN+1CM's frame-dropping threshold-notification process. The M(n)/M/1/K queue is an M/M/1/K queuing system with balking. The state probabilities and average queue size of each ring node were calculated with the model, proving that the average queue size is suppressed in several frames, but not in the most congested queue. Computer simulation results confirm the validity of the queue model. Consequently, it was logically deducted from the proposed M(n)/M/1/K model that bufferbloat is successfully avoided with NRN+1CM independent of the network conditions including the number of nodes, buffer sizes, and the number and types of flows.

  • CLCMiner: Detecting Cross-Language Clones without Intermediates

    Xiao CHENG  Zhiming PENG  Lingxiao JIANG  Hao ZHONG  Haibo YU  Jianjun ZHAO  

     
    PAPER-Software Engineering

      Pubricized:
    2016/11/21
      Vol:
    E100-D No:2
      Page(s):
    273-284

    The proliferation of diverse kinds of programming languages and platforms makes it a common need to have the same functionality implemented in different languages for different platforms, such as Java for Android applications and C# for Windows phone applications. Although versions of code written in different languages appear syntactically quite different from each other, they are intended to implement the same software and typically contain many code snippets that implement similar functionalities, which we call cross-language clones. When the version of code in one language evolves according to changing functionality requirements and/or bug fixes, its cross-language clones may also need be changed to maintain consistent implementations for the same functionality. Thus, it is needed to have automated ways to locate and track cross-language clones within the evolving software. In the literature, approaches for detecting cross-language clones are only for languages that share a common intermediate language (such as the .NET language family) because they are built on techniques for detecting single-language clones. To extend the capability of cross-language clone detection to more diverse kinds of languages, we propose a novel automated approach, CLCMiner, without the need of an intermediate language. It mines such clones from revision histories, based on our assumption that revisions to different versions of code implemented in different languages may naturally reflect how programmers change cross-language clones in practice, and that similarities among the revisions (referred to as clones in diffs or diff clones) may indicate actual similar code. We have implemented a prototype and applied it to ten open source projects implementations in both Java and C#. The reported clones that occur in revision histories are of high precisions (89% on average) and recalls (95% on average). Compared with token-based code clone detection tools that can treat code as plain texts, our tool can detect significantly more cross-language clones. All the evaluation results demonstrate the feasibility of revision-history based techniques for detecting cross-language clones without intermediates and point to promising future work.

  • Fast Reconstruction for Degraded Reads and Recovery Process in Primary Array Storage Systems

    Baegjae SUNG  Chanik PARK  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2016/11/11
      Vol:
    E100-D No:2
      Page(s):
    294-303

    RAID has been widely deployed in disk array storage systems to manage both performance and reliability simultaneously. RAID conducts two performance-critical operations during disk failures known as degraded reads/writes and recovery process. Before the recovery process is complete, reads and writes are degraded because data is reconstructed using data redundancy. The performance of degraded reads/writes is critical in order to meet stipulations in customer service level agreements (SLAs), and the recovery process affects the reliability of a storage system considerably. Both operations require fast data reconstruction. Among the erasure codes for fast reconstruction, Local Reconstruction Codes (LRC) are known to offer the best (or optimal) trade-off between storage overhead, fault tolerance, and the number of disks involved in reconstruction. Originally, LRC was designed for fast reconstruction in distributed cloud storage systems, in which network traffic is a major bottleneck during reconstruction. Thus, LRC focuses on reducing the number of disks involved in data reconstruction, which reduces network traffic. However, we observe that when LRC is applied to primary array storage systems, a major bottleneck in reconstruction results from uneven disk utilization. In other words, underutilized disks can no longer receive I/O requests as a result of the bottleneck of overloaded disks. Uneven disk utilization in LRC is due to its dedicated group partitioning policy to achieve the Maximally Recoverable property. In this paper, we present Distributed Reconstruction Codes (DRC) that support fast reconstruction in primary array storage systems. DRC is designed with group shuffling policy to solve the problem of uneven disk utilization. Experiments on real-world workloads show that DRC using global parity rotation (DRC-G) improves degraded performance by as much as 72% compared to RAID-6 and by as much as 35% compared to LRC under the same reliability. In addition, our study shows that DRC-G reduces the recovery process completion time by as much as 52% compared to LRC.

  • A Probabilistic Adaptation Method for HTTP Low-Delay Live Streaming over Mobile Networks

    Hung T. LE  Nam PHAM NGOC  Anh T. PHAM  Truong Cong THANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2016/11/09
      Vol:
    E100-D No:2
      Page(s):
    379-383

    The study focuses on the adaptation problem for HTTP low-delay live streaming over mobile networks. In this context, the client's small buffer could be easily underflown due to throughput variations. To maintain seamless streaming, we present a probabilistic approach to adaptively decide the bitrate for each video segment by taking into account the instant buffer level. The experimental results show that the proposed method can significantly reduce buffer underflows while providing high video bitrates.

  • LAPS: Layout-Aware Path Selection for Post-Silicon Timing Characterization

    Yu HU  Jing YE  Zhiping SHI  Xiaowei LI  

     
    PAPER-Dependable Computing

      Pubricized:
    2016/10/25
      Vol:
    E100-D No:2
      Page(s):
    323-331

    Process variation has become prominent in the advanced CMOS technology, making the timing of fabricated circuits more uncertain. In this paper, we propose a Layout-Aware Path Selection (LAPS) technique to accurately estimate the circuit timing variation from a small set of paths. Three features of paths are considered during the path selection. Experiments conducted on benchmark circuits with process variation simulated with VARIUS show that, by selecting only hundreds of paths, the fitting errors of timing distribution are kept below 5.3% when both spatial correlated and spatial uncorrelated process variations exist.

  • Learning State Recognition in Self-Paced E-Learning

    Siyang YU  Kazuaki KONDO  Yuichi NAKAMURA  Takayuki NAKAJIMA  Masatake DANTSUJI  

     
    PAPER-Educational Technology

      Pubricized:
    2016/11/21
      Vol:
    E100-D No:2
      Page(s):
    340-349

    Self-paced e-learning provides much more freedom in time and locale than traditional education as well as diversity of learning contents and learning media and tools. However, its limitations must not be ignored. Lack of information on learners' states is a serious issue that can lead to severe problems, such as low learning efficiency, motivation loss, and even dropping out of e-learning. We have designed a novel e-learning support system that can visually observe learners' non-verbal behaviors and estimate their learning states and that can be easily integrated into practical e-learning environments. Three pairs of internal states closely related to learning performance, concentration-distraction, difficulty-ease, and interest-boredom, were selected as targets of recognition. In addition, we investigated the practical problem of estimating the learning states of a new learner whose characteristics are not known in advance. Experimental results show the potential of our system.

  • Effect of Optical Intensity Distribution on Conversion Efficiency of Inverted Organic Photovoltaic Cell

    Toshifumi KOBORI  Norihiko KAMATA  Takeshi FUKUDA  

     
    BRIEF PAPER

      Vol:
    E100-C No:2
      Page(s):
    114-117

    An optical intensity distribution under light irradiation in the organic photovoltaic cell affects the absorbance of the active layer, which determines the photovoltaic performance. In this research, we evaluated the optimum thickness of the organic active layer with poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] and [6,6]-phenyl C71-butyric acid methyl ester. The spectral response of external quantum efficiency was good agreement with the simulated optical intensity distribution within a device stack as a function of the position and the wavelength. As a result, the highest photoconversion efficiency of 10.1% was achieved for the inverted device structure.

  • Label-Free Optical Detection of Fibrinogen in Visible Region Using Nanoimprint Lithography-Based Two-Dimensional Photonic Crystal Open Access

    Tatsuro ENDO  Hiroshi KAJITA  

     
    INVITED PAPER

      Vol:
    E100-C No:2
      Page(s):
    166-170

    For the future medical diagnostics, high-sensitive, rapid, and cost effective biosensors to detect the biomarkers have been desired. In this study, the polymer-based two-dimensional photonic crystal (2D-PC) was fabricated using nanoimprint lithography (NIL) for biosensing application. In addition, for biosensing application, label-free detection of fibrinogen which is a biomarker to diagnose the chronic obstructive pulmonary disease (COPD) could be achieved using antigen-antibody reaction high-sensitively (detection limit: pg/ml order) and rapidly. Using this polymer-based 2D-PC, optical biosensor can be developed cost effectively. Furthermore, by using polymer as a base material for fabrication of 2D-PC, label-free detection of antigen-antibody reaction can be performed in visible region.

  • A Spectrum-Based Saliency Detection Algorithm for Millimeter-Wave InSAR Imaging with Sparse Sensing

    Yilong ZHANG  Yuehua LI  Safieddin SAFAVI-NAEINI  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/10/25
      Vol:
    E100-D No:2
      Page(s):
    388-391

    Object detection in millimeter-wave Interferometric Synthetic Aperture Radiometer (InSAR) imaging is always a crucial task. Facing unpredictable and numerous objects, traditional object detection models running after the InSAR system accomplishing imaging suffer from disadvantages such as complex clutter backgrounds, weak intensity of objects, Gibbs ringing, which makes a general purpose saliency detection system for InSAR necessary. This letter proposes a spectrum-based saliency detection algorithm to extract the salient regions from unknown backgrounds cooperating with sparse sensing InSAR imaging procedure. Directly using the interferometric value and sparse information of scenes in the basis of the Discrete Cosine Transform (DCT) domain adopted by InSAR imaging procedure, the proposed algorithm isolates the support of saliency region and then inversely transforms it back to calculate the saliency map. Comparing with other detecting algorithms which run after accomplishing imaging, the proposed algorithm will not be affected by information-loss accused by imaging procedure. Experimental results prove that it is effective and adaptable for millimeter-wave InSAR imaging.

  • Throughput Enhancement for SATCOM Systems Using Dynamic Spectrum Controlled Channel Allocation under Variable Propagation Conditions

    Katsuya NAKAHIRA  Jun MASHINO  Jun-ichi ABE  Daisuke MURAYAMA  Tadao NAKAGAWA  Takatoshi SUGIYAMA  

     
    PAPER-Satellite Communications

      Pubricized:
    2016/08/31
      Vol:
    E100-B No:2
      Page(s):
    390-399

    This paper proposes a dynamic spectrum controlled (DSTC) channel allocation algorithm to increase the total throughput of satellite communication (SATCOM) systems. To effectively use satellite resources such as the satellite's maximum transponder bandwidth and maximum transmission power and to handle the propagation gain variation at all earth stations, the DSTC algorithm uses two new transmission techniques: spectrum compression and spectrum division. The algorithm controls various transmission parameters, such as the spectrum compression ratio, number of spectrum divisions, combination of modulation method and FEC coding rate (MODCOD), transmission power, and spectrum bandwidth to ensure a constant transmission bit rate under variable propagation conditions. Simulation results show that the DSTC algorithm achieves up to 1.6 times higher throughput than a simple MODCOD-based algorithm.

  • Scattering of a Plane Wave by the End-Face of an Ordered Waveguide System

    Akira KOMIYAMA  

     
    BRIEF PAPER

      Vol:
    E100-C No:1
      Page(s):
    75-79

    We deal with the scattering of a plane wave by the end-face of an ordered waveguide system composed of identical cores of equal space by the perturbation method and derive analytically the diffraction amplitude. It is shown that the results are in relatively good agreement with those obtained by the numerical method.

  • Improved Block Truncation Coding Using Multimode Color Conversion to Reduce Frame Memory in LCD Overdrive

    Moonki CHO  Yungsup YOON  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:1
      Page(s):
    251-258

    The overdrive technique is widely used to eliminate motion blur in liquid-crystal displays (LCDs). However, this technique requires a large frame memory to store the previous frame. A reduction in the frame memory requires an image compression algorithm suitable for real-time data processing. In this paper, we present an algorithm based on multimode-color-conversion block truncation coding (MCC-BTC) to obtain a constant output bit rate and high overdrive performance. The MCC-BTC algorithm uses four compression methods, one of which is selected. The four compression modes either use the single-bitmap-generation method or the subsampling method for chrominance. As shown in the simulation results, the proposed algorithm improves the performance of both coding (up to 2.73dB) and overdrive (up to 2.61dB), and the visual quality is improved in comparison to other competing algorithms in literature.

  • Wavelength Switching Method that Cooperates with Traffic Control for λ-Tunable WDM/TDM-PON

    Jun SUGAWA  Koji WAKAYAMA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2016/07/26
      Vol:
    E100-B No:1
      Page(s):
    75-85

    The λ-tunable WDM/TDM-PON is a promising candidate for next-generation optical access networks since it can provide load balancing between optical subscriber units, power savings, high reliability, and pay-as-you-grow capability. In a λ-tunable WDM/TDM-PON system, the degradation of communication quality caused by wavelength switching should be minimized. The system should also preferably be able to change wavelengths of multi ONUs simultaneously to make wavelength reallocation speed high. The system should also be able to accommodate ONUs whose wavelength tuning times are different. The challenge to meet all three requirements is to suppress latency degradation and frame loss when wavelengths of multi-type ONU are switched simultaneously in WDM/TDM-PON systems. We proposed an OLT architecture and a wavelength switching method that cooperates with traffic control to suppress frame loss and latency degradation by multi-ONU wavelength switching. However, there have been no reports on the impact on latency of downstream and upstream traffic when wavelengths of multi-ONU are simultaneously switched in λ-tunable WDM/TDM-PON. In this paper, we evaluate and analyze the impact of wavelength switching on latency in 40 Gbps WDM/TDM-PON systems. An experiment results show that latency degradation and frame loss are suppressed. Dynamic wavelength allocation operation with 8-ONUs-simulateous wavelength switching in 512-ONUs WDM/TDM-PON system is demonstrated.

  • A Computationally Efficient Schnorr-Euchner Enumeration for Solving Integer Least-Squares Problem in Wireless Communications

    Junil AHN  Jaewon CHANG  Chiho LEE  

     
    LETTER-Communication Theory and Signals

      Vol:
    E100-A No:1
      Page(s):
    327-331

    The integer least-squares (ILS) problem frequently arises in wireless communication systems. Sphere decoding (SD) is a systematic search scheme for solving ILS problem. The enumeration of candidates is a key part of SD for selecting a lattice point, which will be searched by the algorithm. Herein, the authors present a computationally efficient Schnorr-Euchner enumeration (SEE) algorithm to solve the constrained ILS problems, where the solution is limited into the finite integer lattice. To trace only valid lattice points within the underlying finite lattice, the authors devise an adaptive computation of the enumeration step and counting the valid points enumerated. In contrast to previous SEE methods based on a zig-zag manner, the proposed method completely avoids enumerating invalid points outside the finite lattice, and it further reduces real arithmetic and logical operations.

  • Alumina Passivation Films Prepared by Wet Process for Silicon Solar Cells Using Aluminum Isopropoxide as a Sol-Gel Precursor

    Ryosuke WATANABE  Mizuho KAWASHIMA  Yoji SAITO  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E100-C No:1
      Page(s):
    108-111

    We prepared alumina passivation films for p-type silicon substrates by sol-gel wet process mainly using aluminum isopropoxide (Al(O-i-Pr)3) as a precursor material. The precursor solution was spin-coated onto p-type silicon substrates and then calcined for 1 hour in air. Minority carrier lifetime of the passivated wafers was evaluated for different calcination temperature conditions. We also compared the passivation quality of the alumina passivation films using different alumina precursor, aluminum acetylacetonate (Al(acac)3). Obtained effective minority carrier lifetime indicated that the lifetime is strongly depends on the calcination temperature. The substrate calcined below 400°C shows relatively short lifetime below 100 µsec. On the other hand, the substrate calcined around 500°C to 600°C indicates lifetime from 250 to 300 µsec. Calcination temperature dependence of the lifetime for the samples using Al(O-i-Pr)3 precursors shows almost the same as that using Al(acac)3.

6721-6740hit(42807hit)