The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ALG(2355hit)

201-220hit(2355hit)

  • A New Hybrid Ant Colony Optimization Based on Brain Storm Optimization for Feature Selection

    Haomo LIANG  Zhixue WANG  Yi LIU  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2019/04/12
      Vol:
    E102-D No:7
      Page(s):
    1396-1399

    Machine learning algorithms are becoming more and more popular in current era. Data preprocessing especially feature selection is helpful for improving the performance of those algorithms. A new powerful feature selection algorithm is proposed. It combines the advantages of ant colony optimization and brain storm optimization which simulates the behavior of human beings. Six classical datasets and five state-of-art algorithms are used to make a comparison with our algorithm on binary classification problems. The results on accuracy, percent rate, recall rate, and F1 measures show that the developed algorithm is more excellent. Besides, it is no more complex than the compared approaches.

  • Balanced Odd-Variable RSBFs with Optimum AI, High Nonlinearity and Good Behavior against FAAs

    Yindong CHEN  Fei GUO  Hongyan XIANG  Weihong CAI  Xianmang HE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:6
      Page(s):
    818-824

    Rotation symmetric Boolean functions which are invariant under the action of cyclic group have been used in many different cryptosystems. This paper presents a new construction of balanced odd-variable rotation symmetric Boolean functions with optimum algebraic immunity. It is checked that, at least for some small variables, such functions have very good behavior against fast algebraic attacks. Compared with some known rotation symmetric Boolean functions with optimum algebraic immunity, the new construction has really better nonlinearity. Further, the algebraic degree of the constructed functions is also high enough.

  • AI@ntiPhish — Machine Learning Mechanisms for Cyber-Phishing Attack

    Yu-Hung CHEN  Jiann-Liang CHEN  

     
    INVITED PAPER

      Pubricized:
    2019/02/18
      Vol:
    E102-D No:5
      Page(s):
    878-887

    This study proposes a novel machine learning architecture and various learning algorithms to build-in anti-phishing services for avoiding cyber-phishing attack. For the rapid develop of information technology, hackers engage in cyber-phishing attack to steal important personal information, which draws information security concerns. The prevention of phishing website involves in various aspect, for example, user training, public awareness, fraudulent phishing, etc. However, recent phishing research has mainly focused on preventing fraudulent phishing and relied on manual identification that is inefficient for real-time detection systems. In this study, we used methods such as ANOVA, X2, and information gain to evaluate features. Then, we filtered out the unrelated features and obtained the top 28 most related features as the features to use for the training and evaluation of traditional machine learning algorithms, such as Support Vector Machine (SVM) with linear or rbf kernels, Logistic Regression (LR), Decision tree, and K-Nearest Neighbor (KNN). This research also evaluated the above algorithms with the ensemble learning concept by combining multiple classifiers, such as Adaboost, bagging, and voting. Finally, the eXtreme Gradient Boosting (XGBoost) model exhibited the best performance of 99.2%, among the algorithms considered in this study.

  • Variable Regularization Affine Projection Sign Algorithm in Impulsive Noisy Environment

    Ying-Ren CHIEN  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:5
      Page(s):
    725-728

    Affine projection sign algorithm (APSA) is an important adaptive filtering method to combat the impulsive noisy environment. However, the performance of APSA is poor, if its regularization parameter is not well chosen. We propose a variable regularization APSA (VR-APSA) approach, which adopts a gradient-based method to recursively reduce the norm of the a priori error vector. The resulting VR-APSA leverages the time correlation of both the input signal matrix and error vector to adjust the value of the regularization parameter. Simulation results confirm that our algorithm exhibits both fast convergence and small misadjustment properties.

  • Quantum Algorithm on Logistic Regression Problem

    Jun Suk KIM  Chang Wook AHN  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2019/01/28
      Vol:
    E102-D No:4
      Page(s):
    856-858

    We examine the feasibility of Deutsch-Jozsa Algorithm, a basic quantum algorithm, on a machine learning-based logistic regression problem. Its major property to distinguish the function type with an exponential speedup can help identify the feature unsuitability much more quickly. Although strict conditions and restrictions to abide exist, we reconfirm the quantum superiority in many aspects of modern computing.

  • A Novel Radio Resource Optimization Scheme in Closed Access Femtocell Networks Based on Bat Algorithm Open Access

    I Wayan MUSTIKA  Nifty FATH  Selo SULISTYO  Koji YAMAMOTO  Hidekazu MURATA  

     
    INVITED PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    660-669

    Femtocell has been considered as a key promising technology to improve the capacity of a cellular system. However, the femtocells deployed inside a macrocell coverage are potentially suffered from excessive interference. This paper proposes a novel radio resource optimization in closed access femtocell networks based on bat algorithm. Bat algorithm is inspired by the behavior of bats in their echolocation process. While the original bat algorithm is designed to solve the complex optimization problem in continuous search space, the proposed modified bat algorithm extends the search optimization in a discrete search space which is suitable for radio resource allocation problem. The simulation results verify the convergence of the proposed optimization scheme to the global optimal solution and reveal that the proposed scheme based on modified bat algorithm facilitates the improvement of the femtocell network capacity.

  • Proactive Eavesdropping for Suspicious Millimeter Wave Wireless Communications with Spoofing Relay

    Cheng CHEN  Haibo DAI  Tianwen GUO  Qiang YU  Baoyun WANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:4
      Page(s):
    691-696

    This paper investigates the wireless information surveillance in a suspicious millimeter wave (mmWave) wireless communication system via the spoofing relay based proactive eavesdropping approach. Specifically, the legitimate monitor in the system acts as a relay to simultaneously eavesdrop and send spoofing signals to vary the source transmission rate. To maximize the effective eavesdropping rate, an optimization problem for both hybrid precoding design and power distribution is formulated. Since the problem is fractional and non-convex, we resort to the Dinkelbach method to equivalently reduce the original problem into a series of non-fractional problems, which is still coupling. Afterwards, based on the BCD-type method, the non-fractional problem is reduced to three subproblems with two introduced parameters. Then the GS-PDD-based algorithm is proposed to obtain the optimal solution by alternately optimizing the three subproblems and simultaneously updating the introduced parameters. Numerical results verify the effectiveness and superiority of our proposed scheme.

  • The BINDS-Tree: A Space-Partitioning Based Indexing Scheme for Box Queries in Non-Ordered Discrete Data Spaces

    A. K. M. Tauhidul ISLAM  Sakti PRAMANIK  Qiang ZHU  

     
    PAPER

      Pubricized:
    2019/01/16
      Vol:
    E102-D No:4
      Page(s):
    745-758

    In recent years we have witnessed an increasing demand to process queries on large datasets in Non-ordered Discrete Data Spaces (NDDS). In particular, one type of query in an NDDS, called box queries, is used in many emerging applications including error corrections in bioinformatics and network intrusion detection in cybersecurity. Effective indexing methods are necessary for efficiently processing queries on large datasets in disk. However, most existing NDDS indexing methods were not designed for box queries. Several recent indexing methods developed for box queries on a large NDDS dataset in disk are based on the popular data-partitioning approach. Unfortunately, a space-partitioning based indexing scheme, which is more effective for box queries in an NDDS, has not been studied before. In this paper, we propose a novel indexing method based on space-partitioning, called the BINDS-tree, for supporting efficient box queries on a large NDDS dataset in disk. A number of effective strategies such as node split based on minimum span and cross optimal balance, redundancy reduction utilizing a singleton dimension inheritance property, and a space-efficient structure for the split history are incorporated in the constructing algorithm for the BINDS-tree. Experimental results demonstrate that the proposed BINDS-tree significantly improves the box query I/O performance, comparing to that of the state-of-the-artdata-partitioning based NDDS indexing method.

  • A Linear Time Algorithm for Finding a Minimum Spanning Tree with Non-Terminal Set VNT on Series-Parallel Graphs

    Shin-ichi NAKAYAMA  Shigeru MASUYAMA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/01/25
      Vol:
    E102-D No:4
      Page(s):
    826-835

    Given a graph G=(V,E), where V and E are vertex and edge sets of G, and a subset VNT of vertices called a non-terminal set, the minimum spanning tree with a non-terminal set VNT, denoted by MSTNT, is a connected and acyclic spanning subgraph of G that contains all vertices of V with the minimum weight where each vertex in a non-terminal set is not a leaf. On general graphs, the problem of finding an MSTNT of G is NP-hard. We show that if G is a series-parallel graph then finding an MSTNT of G is linearly solvable with respect to the number of vertices.

  • A Simple Heuristic for Order-Preserving Matching

    Joong Chae NA  Inbok LEE  

     
    LETTER

      Pubricized:
    2018/10/30
      Vol:
    E102-D No:3
      Page(s):
    502-504

    Order preserving matching refers to the problem of reporting substrings in the text which are order-isomorphic to the pattern. In this paper, we show a simple heuristic which runs in linear time on average, based on finding the largest elements in each substring and checking their locations against that of the pattern. It is easy to implement and experimental results showed that the running time grows linearly.

  • Program File Placement Problem for Machine-to-Machine Service Network Platform Open Access

    Takehiro SATO  Eiji OKI  

     
    PAPER

      Pubricized:
    2018/09/20
      Vol:
    E102-B No:3
      Page(s):
    418-428

    The Machine-to-Machine (M2M) service network platform accommodates M2M communications traffic efficiently by using tree-structured networks and the computation resources deployed on network nodes. In the M2M service network platform, program files required for controlling devices are placed on network nodes, which have different amounts of computation resources according to their position in the hierarchy. The program files must be dynamically repositioned in response to service quality requests from each device, such as computation power, link bandwidth, and latency. This paper proposes a Program File Placement (PFP) method for the M2M service network platform. First, the PFP problem is formulated in the Mixed-Integer Linear Programming (MILP) approach. We prove that the decision version of the PFP problem is NP-complete. Next, we present heuristic algorithms that attain sub-optimal but attractive solutions. Evaluations show that the heuristic algorithm based on the number of devices that share a program file reduces the total number of placed program files compared to the algorithm that moves program files based on their position.

  • Greedy-Based VNF Placement Algorithm for Dynamic Multipath Service Chaining

    Kohei TABOTA  Takuji TACHIBANA  

     
    PAPER

      Pubricized:
    2018/09/20
      Vol:
    E102-B No:3
      Page(s):
    429-438

    Softwarized networks are expected to be utilized as a core network for the 5th Generation (5G) mobile services. For the mobile core network architecture, service chaining is expected to be utilized for dynamically steering traffic across multiple network functions. In this paper, for dynamic multipath service chaining, we propose a greedy-based VNF placement algorithm. This method can provide multipath service chaining so as to utilize the node resources such as CPU effectively while decreasing the cost about bandwidth and transmission delay. The proposed algorithm consists of four difference algorithms, and VNFs are placed appropriately with those algorithm. Our proposed algorithm obtains near optimal solution for the formulated optimization problem with a greedy algorithm, and hence multipath service chains can be provided dynamically. We evaluate the performance of our proposed method with simulation and compare its performance with the performances of other methods. In numerical examples, it is shown that our proposed algorithm can provide multipath service chains appropriately so as to utilize the limited amount of node resources effectively. Moreover, it is shown that our proposed algorithm is effective for providing service chaining dynamically in large-scale network.

  • Pre-Weighting Based Contention Resolution Diversity Slotted ALOHA Scheme for Geostationary Earth Orbit Satellite Networks

    Bo ZHAO  Guangliang REN  Huining ZHANG  

     
    PAPER-Satellite Communications

      Pubricized:
    2018/09/10
      Vol:
    E102-B No:3
      Page(s):
    648-658

    Pre-weighting based Contention Resolution Diversity Slotted ALOHA-like (PW-CRDSA-like) schemes with joint multi-user multi-slot detection (JMMD) algorithm are proposed to improve the throughput of random access (RA) in geostationary earth orbit (GEO) satellite networks. The packet and its replicas are weighted by different pre-weighting factors at each user terminal, and are sent in randomly selected slots within a frame. The correlation of channels between user terminals and satellite node in different slots are removed by using pre-weighting factors. At the gateway station, after the decoding processing of CRDSA, the combinations of remained signals in slots that can construct virtual multiple-input multiple-output (MIMO) signal models are found and decoded by the JMMD algorithm. Deadlock problems that can be equivalent to virtual MIMO signal models in the conventional CRDSA-like schemes can be effectively resolved, which improves the throughput of these CRDSA-like schemes. Simulation results show that the PW-CRDSA-like schemes with the JMMD significantly outperform the conventional CRDSA-like schemes in terms of the throughput under equal packet loss ratio (PLR) conditions (e.g. PLR =10-2), and as the number of the transmitted replicas increases, the throughput of the PW-CRDSA-like schemes also increases, and the normalized maximum throughput of the PW-CRDSA-5 (i.e., PW-CRDSA with 5 replicas) scheme can reach 0.95.

  • Quantum Query Complexity of Unitary Operator Discrimination Open Access

    Akinori KAWACHI  Kenichi KAWANO  Francois LE GALL  Suguru TAMAKI  

     
    PAPER

      Pubricized:
    2018/11/08
      Vol:
    E102-D No:3
      Page(s):
    483-491

    Unitary operator discrimination is a fundamental problem in quantum information theory. The basic version of this problem can be described as follows: Given a black box implementing a unitary operator U∈S:={U1, U2} under some probability distribution over S, the goal is to decide whether U=U1 or U=U2. In this paper, we consider the query complexity of this problem. We show that there exists a quantum algorithm that solves this problem with bounded error probability using $lceil{sqrt{6} heta_{ m cover}^{-1}} ceil$ queries to the black box in the worst case, i.e., under any probability distribution over S, where the parameter θcover, which is determined by the eigenvalues of $U_1^dagger {U_2}$, represents the “closeness” between U1 and U2. We also show that this upper bound is essentially tight: we prove that for every θcover > 0 there exist operators U1 and U2 such that any quantum algorithm solving this problem with bounded error probability requires at least $lceil{ rac{2}{3 heta_{ m cover}}} ceil$ queries under uniform distribution over S.

  • The Explicit Formula of the Presumed Optimal Recurrence Relation for the Star Tower of Hanoi Open Access

    Akihiro MATSUURA  Yoshiaki SHOJI  

     
    PAPER

      Pubricized:
    2018/10/30
      Vol:
    E102-D No:3
      Page(s):
    492-498

    In this paper, we show the explicit formula of the recurrence relation for the Tower of Hanoi on the star graph with four vertices, where the perfect tower of disks on a leaf vertex is transferred to the central vertex. This gives the solution to the problem posed at the 17th International Conference on Fibonacci Numbers and Their Applications[11]. Then, the recurrence relation are generalized to include the ones for the original 4-peg Tower of Hanoi and the Star Tower of Hanoi of transferring the tower from a leaf to another.

  • BMM: A Binary Metaheuristic Mapping Algorithm for Mesh-Based Network-on-Chip

    Xilu WANG  Yongjun SUN  Huaxi GU  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2018/11/26
      Vol:
    E102-D No:3
      Page(s):
    628-631

    The mapping optimization problem in Network-on-Chip (NoC) is constraint and NP-hard, and the deterministic algorithms require considerable computation time to find an exact optimal mapping solution. Therefore, the metaheuristic algorithms (MAs) have attracted great interests of researchers. However, most MAs are designed for continuous problems and suffer from premature convergence. In this letter, a binary metaheuristic mapping algorithm (BMM) with a better exploration-exploitation balance is proposed to solve the mapping problem. The binary encoding is used to extend the MAs to the constraint problem and an adaptive strategy is introduced to combine Sine Cosine Algorithm (SCA) and Particle Swarm Algorithm (PSO). SCA is modified to explore the search space effectively, while the powerful exploitation ability of PSO is employed for the global optimum. A set of well-known applications and large-scale synthetic cores-graphs are used to test the performance of BMM. The results demonstrate that the proposed algorithm can improve the energy consumption more significantly than some other heuristic algorithms.

  • Exact Exponential Algorithm for Distance-3 Independent Set Problem

    Katsuhisa YAMANAKA  Shogo KAWARAGI  Takashi HIRAYAMA  

     
    LETTER

      Pubricized:
    2018/10/30
      Vol:
    E102-D No:3
      Page(s):
    499-501

    Let G=(V,E) be an unweighted simple graph. A distance-d independent set is a subset I ⊆ V such that dist(u, v) ≥ d for any two vertices u, v in I, where dist(u, v) is the distance between u and v. Then, Maximum Distance-d Independent Set problem requires to compute the size of a distance-d independent set with the maximum number of vertices. Even for a fixed integer d ≥ 3, this problem is NP-hard. In this paper, we design an exact exponential algorithm that calculates the size of a maximum distance-3 independent set in O(1.4143n) time.

  • The Coloring Reconfiguration Problem on Specific Graph Classes

    Tatsuhiko HATANAKA  Takehiro ITO  Xiao ZHOU  

     
    PAPER

      Pubricized:
    2018/10/30
      Vol:
    E102-D No:3
      Page(s):
    423-429

    We study the problem of transforming one (vertex) c-coloring of a graph into another one by changing only one vertex color assignment at a time, while at all times maintaining a c-coloring, where c denotes the number of colors. This decision problem is known to be PSPACE-complete even for bipartite graphs and any fixed constant c ≥ 4. In this paper, we study the problem from the viewpoint of graph classes. We first show that the problem remains PSPACE-complete for chordal graphs even if c is a fixed constant. We then demonstrate that, even when c is a part of input, the problem is solvable in polynomial time for several graph classes, such as k-trees with any integer k ≥ 1, split graphs, and trivially perfect graphs.

  • Efficient Enumeration of Flat-Foldable Single Vertex Crease Patterns

    Koji OUCHI  Ryuhei UEHARA  

     
    PAPER

      Pubricized:
    2018/10/31
      Vol:
    E102-D No:3
      Page(s):
    416-422

    We investigate enumeration of distinct flat-foldable crease patterns under the following assumptions: positive integer n is given; every pattern is composed of n lines incident to the center of a sheet of paper; every angle between adjacent lines is equal to 2π/n; every line is assigned one of “mountain,” “valley,” and “flat (or consequently unfolded)”; crease patterns are considered to be equivalent if they are equal up to rotation and reflection. In this natural problem, we can use two well-known theorems for flat-foldability: the Kawasaki Theorem and the Maekawa Theorem in computational origami. Unfortunately, however, they are not enough to characterize all flat-foldable crease patterns. Therefore, so far, we have to enumerate and check flat-foldability one by one using computer. In this study, we develop the first algorithm for the above stated problem by combining these results in a nontrivial way and show its analysis of efficiency.

  • Full-Aperture Processing of Ultra-High Resolution Spaceborne SAR Spotlight Data Based on One-Step Motion Compensation Algorithm

    Tianshun XIANG  Daiyin ZHU  

     
    PAPER-Remote Sensing

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    247-256

    With the development of spaceborne synthetic aperture radar (SAR), ultra-high spatial resolution has become a hot topic in recent years. The system with high spatial resolution requests large range bandwidths and long azimuth integration time. However, due to the long azimuth integration time, many problems arise, which cannot be ignored in the operational ultra-high resolution spotlight mode. This paper investigates two critical issues that need to be noticed for the full-aperture processing of ultra-high resolution spaceborne SAR spotlight data. The first one is the inaccuracy of the traditional hyperbolic range model (HRM) when the system approaches decimeter range resolution. The second one is the azimuth spectral folding phenomenon. The problems mentioned above result in significant degradation of the focusing effect. Thus, to solve these problems, a full-aperture processing scheme is proposed in this paper which combines the superiorities of two generally utilized processing algorithms: the precision of one-step motion compensation (MOCO) algorithm and the efficiency of modified two-step processing approach (TSA). Firstly, one-step MOCO algorithm, a state-of-the-art MOCO algorithm which has been applied in ultra-high resolution airborne SAR systems, can precisely correct for the error caused by spaceborne curved orbit. Secondly, the modified TSA can avoid the phenomenon of azimuth spectrum folding effectively. The key point of the modified TSA is the deramping approach which is carried out via the convolution operation. The reference function, varying with the instantaneous range frequency, is adopted by the convolution operation for obtaining the unfolding spectrum in azimuth direction. After these operations, the traditional wavenumber domain algorithm is available because the error caused by spaceborne curved orbit and the influence of the spectrum folding in azimuth direction have been totally resolved. Based on this processing scheme, the ultra-high resolution spaceborne SAR spotlight data can be well focused. The performance of the full-aperture processing scheme is demonstrated by point targets simulation.

201-220hit(2355hit)